Summary

使用电梯垂直运动和摩天轮旋转评估大鼠被动运动的自主性和行为效应

Published: February 07, 2020
doi:

Summary

提出了使用电梯垂直运动和摩天轮旋转来评估啮齿动物被动运动自主和行为影响的协议。

Abstract

本研究的总体目标是利用电梯垂直运动和摩天轮旋转装置评估啮齿动物被动运动的自主和行为影响。这些测定有助于确认自主神经系统的完整性和正常功能。它们与基于排便计数、露天检查和平衡梁交叉的定量测量相结合。这些测定的优点是其简单性、可重复性和定量行为测量。这些测定的局限性是,自主反应可能是非庭面性疾病的表征,并且需要一个功能性前庭系统。这些测定的详细程序将大大有助于检查运动病等疾病。

Introduction

运动病(MS)由于异常的视庭刺激导致自主反应,引起症状,如胃外不适,恶心和/或呕吐1。根据目前的理论,运动病可能是由感觉冲突或神经元不匹配引起的,因为接收的综合运动信息不同于预期的环境内部模型2、3或姿势不稳定,就像在支航船上4、5。尽管在运动病和前庭自主功能6、7、8、9、10、11、12方面取得了重大进展,但未来的研究可以通过标准化评估协议加以帮助。评估标准被动运动的自主效应将大大有助于研究运动病的成因和预防。本研究的总体目标是评估啮齿动物被动运动的自主性和行为效应。动物模型,如啮齿动物,允许简单的实验操作(例如,被动运动和药物)和行为评估,可用于研究运动病的病因。在这里,我们提供了一个详细的电池,用于测试被动运动的影响和前庭功能的完整性。

本研究详细介绍了两种测定,即电梯垂直运动(EVM)和摩天轮旋转(FWR),这两种分析对被动运动有自主反应。测定与三个定量行为测量相结合,平衡梁(小鼠13和大鼠14,15,16,17),开场检查和排便计数。EVM(类似于遇到波浪的船舶的俯仰和滚动)通过刺激编码线性加速度的卵波感觉器官(即响应垂直平面运动中的运动的坐腔)18来评估前庭功能。FWR(离心旋转或正弦运动)装置通过线性加速度和半圆道以角加速度19、20刺激耳部器官。摩天轮/离心旋转装置在自主评估中独树一帜。迄今为止,文献中唯一类似的装置是离垂直轴旋转(OVAR)转盘,它用于检查前视反射(VOR)18,21,22,条件避免23,24和超重力25,26,27的影响。EVM测定和FWR设备测定诱导前庭刺激,导致自主反应。我们将 EVM 和 FWR 与平衡光束、排便计数和开场分析 28、29、30 等定量测量点进行耦合,以确保结果可靠且可重现。与之前在小鼠13和大鼠14、15、16、17中描述的类似,平衡梁测定是一个1.0米长的光束,悬挂在距地面0.75米的两个木凳之间,使用简单的黑匣子修改在目标末端(完成)。平衡梁已被用来评估焦虑(模糊的黑匣子)14,17,创伤性损伤15,16,17,在这里,影响平衡的自主反应。我们以前曾对运动病模型中的自主反应进行排便计数,它是一种可靠的定量测量,易于执行,并明确评估6、8、9、11。开场分析使用Ethovision28、盆景30Matlab29中的简单视频分析进行简单的黑盒开场行为评估,以量化运动等行为。在当前协议中,我们使用总距离,但我们注意到存在几种不同的范式(例如,伸长、运动区、速度等)。28,2930.总体而言,这些程序构成一个简短的评估电池,用于检查和评估对被动运动的自主反应,例如运动病6、7、8、9、10、11。目前的检测可以适应各种动物模型。

Protocol

本研究和程序由第二军医大学动物实验伦理委员会(中国上海)根据《实验室动物护理和使用指南》(美国国家研究委员会、美国国家研究委员会、1996). 1. 动物 使用两个月的斯普拉格-道利(SD)大鼠(200~250克)。对于每个行为测定,使用一组单独的大鼠。始终使用单独的控制和实验组。注: 有两个自主测试:EVM 和 FWR。EVM除了一个对照组(=4)之外,还有三个条?…

Representative Results

图 2显示了横向所用时间的代表性平衡光束结果。为了在平衡梁10上达到稳定性能,大鼠连续训练了3天。随后一天,对大鼠进行平衡光束性能评估。在图的 y 轴中,我们为啮齿动物穿越天轮平衡梁、电梯垂直运动和控制组以进行演示目的的秒数。 图 3显示了代表性的排便计数结果。对于电梯垂直运动,除了一个称?…

Discussion

本研究描述了使用电梯垂直运动和摩天轮旋转评估啮齿动物对被动运动的自主反应。这些设备和程序可以很容易地采用到其他啮齿动物和一些修改的测定存在,以确认前庭功能在不同的情况下,如在药理挑战或外科干预。前庭刺激引起的MS研究导致理论认为,感觉冲突或神经元不匹配引起的视觉信息,不同于预期的环境内部模型2,3导致自主反应导致症?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到香港研究资助局、早期职业计划、#21201217项目与C.L.的部分支持。FWR器件在中国拥有专利:ZL201120231912.1。

Materials

Elevator vertical motion device Custom Custom-made Elevator vertical motion device to desired specifications
Ethovision Noldus Information Technology Video tracking software
Ferris-wheel rotation device Custom Custom-made Ferris-wheel rotation device to desired specifications
Latex, polyvinyl or nitrile gloves AMMEX Use unpowdered gloves 8-mil
Open field box Custom Darkened plexiglass box with IR camera
Rat or mouse JAX labs Any small rodent
Small rodent cage Tecniplast 1284L
Wooden beam and stools Custom Custom-made wooden beam and stools to specifications indicated

References

  1. Balaban, C. D. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Current Opinion in Neurology. 12, 29-33 (1999).
  2. Reason, J. T. Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine. 71, 819-829 (1978).
  3. Keshavarz, B., Hettinger, L. J., Kennedy, R. S., Campos, J. L. Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. PLOS One. 9, 101016 (2014).
  4. Stoffregen, T. A., Chen, F. C., Varlet, M., Alcantara, C., Bardy, B. G. Getting your sea legs. PLoS One. 8, 66949 (2013).
  5. Smart, L. J., Pagulayan, R. J., Stoffregen, T. A. Self-induced motion sickness in unperturbed stance. Brain Research Bulletin. 47, 449-457 (1998).
  6. Wang, J. Q., et al. Temporal change in NMDA receptor signaling and GABAA receptor expression in rat caudal vestibular nucleus during motion sickness habituation. Brain Research. 1461, 30-40 (2012).
  7. Cai, Y. L., et al. Glutamatergic vestibular neurons express FOS after vestibular stimulation and project to the NTS and the PBN in rats. Neuroscience Letters. 417, 132-137 (2007).
  8. Cai, Y. L., et al. Decreased Fos protein expression in rat caudal vestibular nucleus is associated with motion sickness habituation. Neuroscience Letters. 480, 87-91 (2010).
  9. Wang, J. Q., Qi, R. R., Zhou, W., Tang, Y. F., Pan, L. L., Cai, Y. Differential Gene Expression profile in the rat caudal vestibular nucleus is associated with individual differences in motion sickness susceptibility. PLoS One. 10, 0124203 (2015).
  10. Zhou, W., et al. Sex and age differences in motion sickness in rats: The correlation with blood hormone responses and neuronal activation in the vestibular and autonomic nuclei. Frontiers in Aging Neuroscience. 9, 29 (2017).
  11. Wang, J., Liu, J., Pan, L., Qi, R., Liu, P., Zhou, W., Cai, Y. Storage of passive motion pattern in hippocampal CA1 region depends on CaMKII/CREB signaling pathway in a motion sickness rodent model. Scientific Reports. 7, 43385 (2017).
  12. Qi, R., et al. Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology. 146, 252-263 (2019).
  13. Luong, T. N., Carlisle, H. J., Southwell, A., Patterson, P. H. Assessment of motor balance and coordination in mice using the balance beam. Journal of Visualized Experiments. (49), e2376 (2011).
  14. Kalueff, A. V., Minasyan, A., Tuohimaa, P. Behavioural characterization in rats using the elevated alley Suok test. Behavioural Brain Research. 30 (1), 52-57 (2005).
  15. Piot-Grosjean, O., Wahl, F., Gobbo, O., Stutzmann, J. M. Assessment of sensorimotor and cognitive deficits induced by a moderate traumatic injury in the right parietal cortex of the rat. Neurobiology of Disease. 8 (6), 1082-1093 (2001).
  16. Goldstein, L. B., Davis, J. N. Beam-walking in rats: Studies towards developing an animal model of functional recovery after brain injury. Journal of Neuroscience Methods. 31 (2), 101-107 (1990).
  17. Sweis, B. M., et al. modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury. Behavioural Brain Research. 296, 149-156 (2016).
  18. Hess, B. J., Dieringer, N. Spatial organization of the maculo-ocular reflex of the rat: Responses during off-vertical axis rotation. European Journal of Neuroscience. 2, 909-919 (1990).
  19. Armstrong, P. A., et al. Preserved otolith organ function in caspase-3-deficient mice with impaired horizontal semicircular canal function. Experimental Brain Research. 233 (6), 1825-1835 (2015).
  20. Riccio, D. C., Thach, J. S. Response suppression produced by vestibular stimulation in the rat. Journal of the Experimental Analysis of Behavior. 11 (4), 479-488 (1968).
  21. Rabbath, G., et al. Abnormal vestibular control of gaze and posture in a strain of a waltzing rat. Experimental Brain Research. 136, 211-223 (2001).
  22. Brettler, S. C., et al. The effect of gravity on the horizontal and vertical vestibulo-ocular reflex in the rat. Experimental Brain Research. 132, 434-444 (2000).
  23. Hutchison, S. L. Taste aversion in albino rats using centrifugal spin as an unconditioned stimulus. Psychological Reports. 33 (2), 467-470 (1973).
  24. Green, K. F., Lee, D. W. Effects of centrifugal rotation on analgesia and conditioned flavor aversions. Physiology & Behavior. 40 (2), 201-205 (1987).
  25. Tse, Y. C., et al. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. Journal of Comparative Neurology. 508 (2), 343-364 (2008).
  26. Lai, C. H., Tse, Y. C., Shum, D. K., Yung, K. K., Chan, Y. S. Fos expression in otolith-related brainstem neurons of postnatal rats following off-vertical axis rotation. Journal of Comparative Neurology. 470 (3), 282-296 (2004).
  27. Lai, S. K., Lai, C. H., Yung, K. K., Shum, D. K., Chan, Y. S. Maturation of otolith-related brainstem neurons in the detection of vertical linear acceleration in rats. European Journal of Neuroscience. 23 (9), 2431-2446 (2006).
  28. Aitken, P., Zheng, Y., Smith, P. F. Ethovision analysis of open field behaviour in rats following bilateral vestibular loss. Journal of Vestibular Research. 27 (2-3), 89-101 (2017).
  29. Gao, V., Vitaterna, M. H., Turek, F. W. Validation of video motion-detection scoring of forced swim test in mice. Journal of Neuroscience Methods. 235, 59-64 (2014).
  30. Lopes, G., et al. Bonsai: an event-based framework for processing and controlling data streams. Frontiers in Neuroinformatics. 9, 7 (2015).
  31. Conder, G. A., Sedlacek, H. S., Boucher, J. F., Clemence, R. G. Efficacy and safety of maropitant, a selective neurokinin 1 receptor antagonist, in two randomized clinical trials for prevention of vomiting due to motion sickness in dogs. Journal of Veterinary Pharmacology and Therapeutics. 31, 528-532 (2008).
  32. Percie du Sert, N., Chu, K. M., Wai, M. K., Rudd, J. A., Andrews, P. L. Telemetry in a motion-sickness model implicates the abdominal vagus in motion-induced gastric dysrhythmia. Experimental Physiology. 95, 768-773 (2010).
  33. Lackner, J. R. Motion sickness: more than nausea and vomiting. Experimental Brain Research. 232, 2493-2510 (2014).
  34. Lucot, J. B. Effects of naloxone on motion sickness in cats alone and with broad spectrum antiemetics. Autonomic Neuroscience. 202, 97-101 (2016).
  35. McCaffrey, R. J. Appropriateness of kaolin consumption as an index of motion sickness in the rat. Physiology & Behavior. 35, 151-156 (1985).
  36. Horn, C. C., et al. Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS One. 8 (4), 60537 (2013).
  37. Ossenkopp, K. -. P., Frisken, N. L. Defecation as an index of motion sickness in the rat. Physiological Psychology. 10, 355-360 (1982).
  38. Ossenkopp, K. P., Rabi, Y. J., Eckel, L. A., Hargreaves, E. L. Reductions in body temperature and spontaneous activity in rats exposed to horizontal rotation: abolition following chemical labyrinthectomy. Physiology & Behavior. 56, 319-324 (1994).
  39. Oman, C. M. Motion sickness: a synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology. 68, 294-303 (1990).
  40. Hu, D. L., et al. Emesis in the shrew mouse (Suncus murinus) induced by peroral and intraperitoneal administration of staphylococcal enterotoxin A. Journal of Food Protection. 62, 1350-1353 (1999).
  41. Ueno, S., Matsuki, N., Saito, H. Suncus murinus as a new experimental model for motion sickness. Life Sciences. 43, 413-420 (1988).

Play Video

Cite This Article
Manno, F. A. M., Pan, L., Mao, Y., Su, Y., Manno, S. H. C., Cheng, S. H., Lau, C., Cai, Y. Assessing the Autonomic and Behavioral Effects of Passive Motion in Rats using Elevator Vertical Motion and Ferris-Wheel Rotation. J. Vis. Exp. (156), e59837, doi:10.3791/59837 (2020).

View Video