Summary

通过CAS9蛋白-gRNA复合物电穿孔直接基因敲除Axolotl脊髓神经干细胞

Published: July 09, 2019
doi:

Summary

这里介绍的一个协议,通过将CAS9-gRNA复合物注射到脊髓中央管中,然后进行电穿孔,在axolotl脊髓中执行时间和空间限制基因敲除。

Abstract

轴线具有完全再生脊髓的独特能力。这主要是由于脑细胞作为神经干细胞(NSCs)在一生中残留,这些细胞增殖以改造脑管,并在脊髓损伤后分化成丢失的神经元。解读这些 NSC 如何在脊髓损伤后保持多能性并在脊髓损伤时增殖,以改革确切的损伤前结构,从而对哺乳动物脊髓如何再生以及潜在的治疗方案提供有价值的见解。在限定时间内在NSC的特定子集中执行基因敲除,将使得研究这些再生过程背后的分子机制,而不会被发育扰动效应所迷惑。此处描述的是一种使用 CRISPR-Cas9 系统在 axolotl 脊髓 NSC 中执行基因敲除的方法。通过将 CAS9-gRNA 复合物注入脊髓中央管,然后进行电穿孔,目标基因在脊髓特定区域的 NSC 中按所需时间点被敲掉,从而在脊髓 NSC 期间进行分子研究再生。

Introduction

大多数脊椎动物的脊髓在受伤后无法再生,导致永久性残疾。几个蜥蜴,如异种,是明显的例外。axolotl 可以完全再生结构相同的脊髓,并完全恢复脊髓功能。轴线脊髓的再生能力大部分是由于脑膜细胞。这些细胞排列在中央通道上,与哺乳动物不同,轴球细胞作为神经干细胞(NSC)在胚胎后发育。脊髓损伤(例如,从尾部截肢)后,这些NSC增殖,以重新生长的脑管和分化,以取代丢失的神经元1,2,3。揭示轴线脊髓NSC如何保持多能和在损伤后激活,可以为人类患者开发新的治疗策略提供有价值的信息。

由于CRISPR-Cas9基因敲除技术的进步,执行敲除破译基因功能变得更容易,并已证明在各种物种中具有广泛的适用性,包括axolotls4,5,6,7,8.最近发布的完整 axolotl 基因组和转录组现在允许任何基因组位点被靶向,并更好地评估偏离目标的效果 9,10,11,12,13,14.使用CRISPR-Cas9系统15,为敲除和敲击的轴线开发了优化的协议。以CAS9蛋白-gRNA核糖核蛋白(RNP)的形式交付CRISPR-Cas9机械,已经证明比使用Cas9和gRNA编码质粒4更有效。这可能是由于RNP比质粒载体尺寸小,它能够立即产生DNA断裂,并保护gRNA免受RNA降解。此外,使用 RNP 可绕过转录和翻译;因此,当质粒元素来自不同的物种时,它避免了启动子强度和最佳柯顿使用等问题。

功能丧失研究是研究感兴趣的基因的潜在功能的一般方法之一。为了研究再生过程中的基因功能,最好在受伤前进行敲除,以避免对发育的影响。此外,淘汰应限于 NSC 和再生区域。在所有NSC(包括大脑中的目标基因,即Cre-LoxP系统中)中,目标基因的敲除可能产生与再生无关的效果,从而混淆结果的解释。幸运的是,在NSC中,轴线脊髓的结构为时间和空间受限的淘汰提供了一个独特的机会。大多数脊髓NSC与中央运河接触,构成与中央运河接触的绝大多数细胞16、17。因此,将CAS9-gRNA复合物注射到中央通道,然后进行电穿孔,允许在4、18、19的特定时间将脊髓NSC输送到所需区域。该协议演示了如何执行,导致目标脊髓NSC的高度穿透性敲除。然后进行后续分析,以研究对再生和NSC行为的影响。

Protocol

所有动物实验必须按照地方和国家动物实验条例进行,并经有关机构审查委员会批准。 1. 准备CAS9-gRNA RNP组合 设计和合成gRNA。注:请参阅其他出版物,用于设计和合成gRNA,包括一份专门涉及axolotls 15、20、21、22的出版物。 通过内部制备或商业购买获得CAS9-NLS蛋白质。<…

Representative Results

CAS9-gRNA复合物对Sox2的注射和电穿孔进入轴球脊髓中央管,导致大多数脊髓NSC中SOX2免疫反应性严重丧失,以gRNA对酪氨酸酶(Tyr)作为对照(图2)A.B3-tubulin(与TUJ1染色)是神经元的标记物,在NSCs中没有表达,而围绕中央管道的SOX2-TUJ1-细胞被认为是含有Sox2缺失的细胞。通过CAS9-Sox2-gRNA电穿孔(图2B),定量显示Sox2在大量N…

Discussion

所述协议允许在轴线脊髓的NSC中进行时间和空间限制基因敲除。当前协议允许在定义的时间和位置对 NSC 进行特定定位,且渗透性较高。它避免了在使用 Cre-LoxP 系统时在其他地区(如大脑)中来自 NSC 中基因敲除的潜在不良效应。它还避免了来自持续淘汰的发育影响,允许研究以再生为重点的基因功能。此外,该协议可以在野生型动物中执行,避免产生Cre-LoxP系统所需的额外转基因轴胶所需的长时间等待。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢田中美利教授的持续和长期支持。这项工作得到了国家自然科学基金(国家自然科学基金)资助(317716)、华南师范大学研究启动补助金(S82111和8S0109)和中国博士后科学基金资助(2018M633067)的支持。

Materials

Agarose Sigma-Aldrich A9539
Benzocaine Sigma-Aldrich E1501-100G
Benzocaine 0.03 % (wt/vol) Mix 500 ml of 10× TBS, 500 ml of 400% (wt/vol) Holtfreter’s solution and 30 ml of 10% (wt/vol) benzocaine stock solution. Fill up the volume to 10 L with dH2O. The solution can be stored at room temperature for up to 6 months.
Benzocaine 10 % (wt/vol) Mix 50 g of benzocaine in 500 ml of 100% (vol/vol) ethanol. The solution can be stored at room temperature for up to 12 months.
Borosilicate glass capillaries 1.2 mm O.D., 0.94 mm I.D. Stutter Instrument  BF120-94-8
CaCl2·2H2O Merck 102382
CAS9 buffer, 10x Mix 200 mM HEPES and 1.5 M KCl in RNase-free water. Adjust pH to 7.5. Filter sterilize, aliquot and store at −20 °C for up to 24 months
CAS9-NLS protein   PNA Bio CP03
Cell culture dishes, 10cm Falcon 351029
Dumont #5 – Fine Forceps Fine Scientific Instruments 11254-20
Electroporator Nepa Gene  NEPA21
BEX Pulse Generator CUY21EDIT II
Fast Green FCF Sigma-Aldrich F7252-5G
Fast Green FCF Solution, 5x Dissolve 12.5 mg of Fast Green FCF powder in 10 mL of 1× PBS.
Flaming/Brown Micropipette Puller  Stutter Instrument  P-97
Holtfreter’s solution 400% (wt/vol)  Dissolve 11.125 g of MgSO4·7H2O, 5.36 g of CaCl2·2H2O, 158.4 g of NaCl and 2.875 g of KCl in 10 L of dH2O. The solution can be stored at room temperature for up to 6 months.
KCl Merck 104936
MgSO4·7H2O Merck 105886
Microloader pipette tips Eppendorf 5242956003
Micromanipulator  Narishige MN-153 
NaCl Merck 106404
Pneumatic PicoPump World Precision Instruments  SYS-PV830
Ring Forceps Fine Scientific Instruments 11103-09
Stereomicroscope Olympus SZX10 
Tris base Sigma-Aldrich T6066
Tris-buffered saline, 10x Dissolve 24.2 g of Tris base and 90 g of NaCl in 990 ml of dH2O. Adjust pH to 8.0 by adding 10 ml of 37% (vol/vol) HCl. The solution can be stored at room temperature for up to 6 months.
Tweezers w/Variable Gap 2 Round Platinum Plate Electrode, 10mm diameter Nepa Gene  CUY650P10

References

  1. O’Hara, C. M., Egar, M. W., Chernoff, E. A. G. Reorganization of the ependyma during axolotl spinal cord regeneration: Changes in intermediate filament and fibronectin expression. Developmental Dynamics. 193 (2), 103-115 (1992).
  2. Mchedlishvili, L., Mazurov, V., Tanaka, E. M. Reconstitution of the Central Nervous System During Salamander Tail Regeneration from the Implanted Neurospheres. Plant, Soil and Environment. 916 (8), 197-202 (2012).
  3. Nordlander, R. H., Singer, M. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. Journal of Comparative Neurology. 180 (2), 349-373 (1978).
  4. Fei, J. F., et al. Tissue- and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knock-out for studying gene function in regeneration. npj Regenerative Medicine. 1 (1), 16002 (2016).
  5. Fei, J. F., et al. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Reports. 3 (3), 444-459 (2014).
  6. Flowers, G. P., Timberlake, A. T., McLean, K. C., Monaghan, J. R., Crews, C. M. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development. 141 (10), 2165-2171 (2014).
  7. Flowers, G. P., Sanor, L. D., Crews, C. M. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration. eLife. 6, (2017).
  8. Fei, J. -. F., et al. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proceedings of the National Academy of Sciences. 201706855. , (2017).
  9. Nowoshilow, S., et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 554 (7690), 50-55 (2018).
  10. Bryant, D. M., et al. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Reports. 18 (3), 762-776 (2017).
  11. Smith, J. J., et al. A chromosome-scale assembly of the axolotl genome. Genome Research. 373548, (2019).
  12. Smith, J. J., et al. Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics. 6, 1-6 (2005).
  13. Campbell, L. J., et al. et al Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Developmental Dynamics. 240 (7), 1826-1840 (2011).
  14. Stewart, R., et al. Comparative RNA-seq Analysis in the Unsequenced Axolotl: The Oncogene Burst Highlights Early Gene Expression in. the Blastema. PLoS Computational Biology. 9 (3), (2013).
  15. Fei, J. -. F., et al. Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nature Protocols. 13 (12), 2908-2943 (2018).
  16. Holder, N., et al. Continuous growth of the motor system in the axolotl. Journal of Comparative Neurology. 303 (4), 534-550 (1991).
  17. Tazaki, A., Tanaka, E. M., Fei, J. F. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration. 발생학. 432 (1), 63-71 (2017).
  18. Albors, A. R., Tanaka, E. M. High-Efficiency Electroporation of the Spinal Cord in Larval Axolotl. Salamanders in Regeneration Research: Methods and Protocols. 1290, 115-125 (2015).
  19. Albors, A. R., et al. et al Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. eLife. 4, 1-29 (2015).
  20. Cong, L., et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 339 (6121), 819-823 (2013).
  21. Doench, J. G., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 34 (2), 184-191 (2016).
  22. Graham, D. B., Root, D. E. Resources for the design of CRISPR gene editing experiments. Genome Biology. 16 (1), 260 (2015).
  23. Khattak, S., et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nature Protocols. 9 (3), 529-540 (2014).
check_url/kr/59850?article_type=t

Play Video

Cite This Article
Lou, W. P., Wang, L., Long, C., Liu, L., Fei, J. Direct Gene Knock-out of Axolotl Spinal Cord Neural Stem Cells via Electroporation of CAS9 Protein-gRNA Complexes. J. Vis. Exp. (149), e59850, doi:10.3791/59850 (2019).

View Video