Summary

制造用于采用免疫疗法的奇美抗原受体(CAR)T细胞

Published: December 17, 2019
doi:

Summary

我们描述了一种可靠地生成嵌合抗原受体(CAR)T细胞的方法,并测试其体外和体内的分化和功能。

Abstract

采用免疫疗法对治疗癌症和传染病有希望。我们描述了一种用嵌合抗原受体(CAR)转导原发人类T细胞并扩展其后代前体的简单方法。我们包括检测,以测量CAR表达以及分化,增殖能力和细胞解细胞活性。我们描述检测,以测量在CAR T细胞中产生效应细胞因子和炎症细胞因子分泌物。该方法为采用免疫治疗的临床前模型培养CAR T细胞提供了可靠、全面的方法。

Introduction

奇美抗原受体(CARs)提供了一种有希望的方法,可以针对不同的肿瘤抗原重定向T细胞。CARs 是结合抗原靶点的合成受体。虽然其精确组成是可变的,但 CA 通常包含 3 个不同的域。细胞外域直接结合到靶抗原,通常由通过细胞外铰链与CAR相连的单链抗体片段组成。第二个域,通常来自T细胞受体(TCR)复合物的CD3*链,促进CAR参与后的T细胞激活。包括第三个成本领域,以增强T细胞功能,移植,代谢和持久性。CAR T细胞治疗在各种造血恶性肿瘤中的成功,包括B细胞急性淋巴细胞白血病(ALL)、慢性淋巴细胞白血病(CLL)和多发性骨髓瘤,凸显了这种方法1、2、3、4、5、6的治疗前景。最近美国食品和药物管理局 (FDA) 批准两种 CD19 特异性 CAR T 细胞疗法,针对儿科和年轻成人的 tisagenlecleucel 和用于扩散大 B 细胞淋巴瘤的 axicabagene 胆珠,强化了 CAR T 细胞治疗的转化价值。

基于CAR T的方法包括从外周血分离T细胞、活化、基因改造和外体扩张。分化是调节CAR T细胞疗效的重要参数。因此,在外体培养过程中限制T细胞分化可增强注入产物的移植、扩张和坚持能力,在采用转移2、7、8、9之后提供长期免疫监测。T细胞由几个不同的子集组成,包括:幼稚的T细胞(Tn)、中央记忆(Tcm)、效应器记忆(Tem)、效应器分化(T)和干细胞记忆(Tscm)。效应者分化T细胞具有强效细胞解细胞能力;然而,他们是短暂的和移植差10,11,12。相反,具有较少分化表型的T细胞,包括幼稚的T细胞和Tcm在采用细胞转移13、14、15、16、17、18之后表现出优异的增生和增殖能力。预制造产品中收集的T细胞的组成可能因患者而异,并与CAR T细胞的治疗潜力相关。在起始阿普西斯产品中,具有天真型免疫表型的T细胞比例与移植和临床反应高度相关19。

培养持续时间是影响CAR T细胞分化的重要参数,为采用转移做准备。我们最近开发了一种方法,使用缩写培养范式20生成高质量的CAR T细胞。利用我们的方法,我们表明,有限的培养导致CAR T细胞具有优越的效应功能和持久性后,在白血病的异种移植模型的收养转移。在这里,我们介绍可靠生成CART19细胞的方法(用于表达CD33和4-1BB信令域的抗CD19 scFv的自体T细胞),并包括分析的详细说明,在采用转移之前提供对CAR T生物活性和有效性的洞察。

Protocol

所有动物研究都得到宾夕法尼亚大学动物护理和使用委员会的批准。 1. T细胞激活、转导和扩张 与抗CD3/CD28磁珠(例如,dynabet)混合,在6孔细胞培养皿中,以每T细胞3个珠的比例激活新鲜或冷冻保存的初级人类T细胞。X-VIVO 15培养基中的培养T细胞辅以5%正常人AB血清、2mM L-谷氨酰胺、20 mM HEPES和IL2(100单位/mL)。在扩张过程中将T细胞的浓度保持在106T细胞/mL。培?…

Representative Results

使用上述方法,我们刺激和扩展T细胞3或9天(图1A,B)。我们还通过测量细胞表面表达的独特糖蛋白的丰度,分析了它们的分化特征,如图1C中概述的浇注策略所示。在外体培养过程中,我们显示出一个逐渐向效应器分化的转变(图1D)。我们评估了CAR T细胞对抗原的反应作用和增殖能力。我?…

Discussion

在这里,我们描述了测量CAR T细胞的功能和功效的方法,这些细胞在整个外体培养过程中以不同的间隔收获。我们的方法提供全面的检测分析,旨在评估增殖能力以及体外效应器功能。我们描述了如何通过CAR刺激测量CAR T细胞活性,并使用在对数扩张阶段的第3天和第9天收获的CAR T细胞进行详细白血病异种移植模型。

在比较在外体扩张期间在不同时间点采集的CAR T细胞的功效存?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了诺华制药公司通过与宾夕法尼亚大学(迈克尔·米隆)的研究联盟以及圣巴尔德里克基金会学者奖(萨巴·加塞米)提供的资金的支持。

Materials

Anti CD3/CD28 dynabeads Thermo Fisher 40203D
APC Mouse Anti-Human CD8 BD Biosciences 555369 RRID:AB_398595
APC-H7 Mouse anti-Human CD8 Antibody BD Biosciences 560179 RRID:AB_1645481
BD FACS Lysing Solution 10X Concentrate BD Biosciences 349202
BD Trucount Absolute Counting Tubes BD Biosciences 340334
Brilliant Violet 510 anti-human CD4 Antibody BioLegend 317444 RRID:AB_2561866
Brilliant Violet 605 anti-human CD3 Antibody BioLegend 317322 RRID:AB_2561911
CellTrace CFSE Cell Proliferation Kit Life Technolohgies C34554
CountBright Absolute Counting Beads, Invitrogen C36950
FITC anti-Human CD197 (CCR7) Antibody BD Pharmingen 561271 RRID:AB_10561679
FITC Mouse Anti-Human CD4 BD Biosciences 555346 RRID:AB_395751
HEPES Gibco 15630-080
Human AB serum Valley Biomedical HP1022
Human IL-2 IS, premium grade Miltenyi 130-097-744
L-glutamine Gibco 28030-081
Liquid scintillation counter, MicroBeta trilux Perkin Elmer
LIVE/DEAD Fixable Violet Molecular Probes L34964
Multisizer Coulter Counter Beckman Coulter
Na251CrO4 Perkin Elmer NEZ030S001MC
Pacific Blue anti-human CD14 Antibody BioLegend 325616 RRID:AB_830689
Pacific Blue anti-human CD19 Antibody BioLegend 302223
PE anti-human CD45RO Antibody BD Biosciences 555493 RRID:AB_395884
PE/Cy5 anti-human CD95 (Fas) Antibody BioLegend 305610 RRID:AB_493652
PE/Cy7 anti-human CD27 Antibody Beckman Coulter A54823
Phenol red-free medium Gibco 10373-017
UltraPure SDS Solution, 10% Invitrogen 15553027
Via-Probe BD Biosciences 555815
X-VIVO 15 Gibco 04-418Q
XenoLight D-Luciferin – K+ Salt Perkin Elmer 122799

References

  1. Brentjens, R. J., et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science Translational Medicine. 5 (177), 177ra138 (2013).
  2. Grupp, S. A., et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 368 (16), 1509-1518 (2013).
  3. Kalos, M., et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Science Translational Medicine. 3 (95), 95ra73 (2011).
  4. Kochenderfer, J. N., Rosenberg, S. A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nature Reviews. Clinical Oncology. 10 (5), 267-276 (2013).
  5. Maude, S. L., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine. 371 (16), 1507-1517 (2014).
  6. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine. 365 (8), 725-733 (2011).
  7. Porter, D. L., et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine. 7 (303), 303ra139 (2015).
  8. Maude, S. L., Teachey, D. T., Porter, D. L., Grupp, S. A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 125 (26), 4017-4023 (2015).
  9. Kochenderfer, J. N., et al. Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels. Journal of Clinical Oncology. 35 (16), 1803-1813 (2017).
  10. Bollard, C. M., Rooney, C. M., Heslop, H. E. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature Reviews. Clinical Oncology. 9 (9), 510-519 (2012).
  11. Brestrich, G., et al. Adoptive T-cell therapy of a lung transplanted patient with severe CMV disease and resistance to antiviral therapy. American Journal of Transplantation. 9 (7), 1679-1684 (2009).
  12. Savoldo, B., et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood. 108 (9), 2942-2949 (2006).
  13. Berger, C., et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. The Journal of Clinical Investigation. 118 (1), 294-305 (2008).
  14. Gattinoni, L., et al. A human memory T cell subset with stem cell-like properties. Nature Methods. 17 (10), 1290-1297 (2011).
  15. Hinrichs, C. S., et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America. 106 (41), 17469-17474 (2009).
  16. Klebanoff, C. A., et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proceedings of the National Academy of Sciences of the United States of America. 102 (27), 9571-9576 (2005).
  17. Wang, X., et al. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood. 117 (6), 1888-1898 (2011).
  18. Wang, X., et al. Comparison of naive and central memory derived CD8+ effector cell engraftment fitness and function following adoptive transfer. Oncoimmunology. 5 (1), e1072671 (2016).
  19. Fraietta, J., et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine. 24 (5), 563-571 (2018).
  20. Ghassemi, S., et al. Reducing Ex Vivo Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research. 6 (9), 1100-1109 (2018).
  21. Milone, M. C., et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Molecular therapy : the journal of the American Society of Gene Therapy. 17 (8), 1453-1464 (2009).
  22. Cieri, N., et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 121 (4), 573-584 (2013).
  23. Cui, G., et al. IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8 T Cell Longevity. Cell. 161 (4), 750-761 (2015).
  24. Xu, Y., et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 123 (24), 3750-3759 (2014).
  25. Singh, N., Perazzelli, J., Grupp, S. A., Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Science Translational Medicine. 8 (320), 320ra323 (2016).

Play Video

Cite This Article
Ghassemi, S., Milone, M. C. Manufacturing Chimeric Antigen Receptor (CAR) T Cells for Adoptive Immunotherapy. J. Vis. Exp. (154), e59949, doi:10.3791/59949 (2019).

View Video