Summary

光斑分析分析果蝇拉瓦尔光轴

Published: September 27, 2019
doi:

Summary

该协议引入了一种光点测定,以调查果蝇幼虫光法行为。在此测定中,光点产生为光刺激,而幼虫避光过程由红外光成像系统记录。

Abstract

在觅食阶段,果蝇的幼虫表现出明显的避光行为。果蝇幼虫光毒可作为研究动物回避行为的模型。该协议引入了一种光点测定,以研究幼虫光法行为。实验装置包括两个主要部分:产生光斑的视觉刺激系统,以及记录幼虫避光过程的红外光成像系统。这种测定允许跟踪幼虫在进入之前、遇到期间和离开光斑后的行为。可以使用此方法捕获和分析幼虫运动的细节,包括减速、暂停、头部铸造和车削。

Introduction

在觅食阶段,果蝇的幼虫表现出明显的避光行为。果蝇幼虫照片一直在调查,特别是在过去50年1,2,3,4,5,6,7 8.近年来,尽管事实上1)许多神经元调解幼虫光避免已被确定4,5,9,10,11,122)在突触的分辨率下,幼虫视觉系统的完整连接体已经建立13个,幼虫光突厥背后的神经机制基本仍不清楚。

在研究幼虫光轴时,已经使用了一些行为测定。它们大致可以分为两类:一类涉及空间光梯度,另一类涉及时光梯度。对于空间光梯度测定,竞技场在光明和黑暗中被分成相等数量的截面。竞技场可以分为光明和黑暗两部分2,4或光明和暗象限14,15,甚至可以分为交替的光明和黑暗方块,如棋盘7。通常,琼脂板用于空间光梯度测定,但被分为交替光和暗部分的管子也可以使用10,14。

在旧版本的测定中,光照通常源自幼虫的下方。然而,较新版本的照明主要来自上述,因为幼虫眼(例如,对低或中光强度16敏感的Bolwig器官)包含在不透明的头足骨骨架中,其开口朝向上前。这使得幼虫对来自上前方向的光比从方向7后面的下方对光更敏感。对于时光梯度测定,竞技场中的光强度在空间上是均匀的,但强度会随时间而变化。除了时态方波光(即闪烁开/关或强/弱光3,7),与线性强度斜带一致的时态变化光也使用8测量幼虫对时间变化的光刺激。

第三种类型的光射器测定是定向光景导航,它涉及从上面以45°7的角度进行照明。在Kane等人7号工作之前,在幼虫光刻测定中只计算了幼虫在光和暗区域的数量、转弯频率和足迹长度等粗糙参数。由于同一组的工作,通过分析幼虫光片的高时态分辨率视频记录,在光刻过程中幼虫运动的详细动态(即幼虫身体不同部位的瞬间速度、方向、转弯角度和相应的角速度)已被分析7。因此,已经能够发现更多的幼虫光轴行为的细节。在这些测定中,幼虫在组内测试,因此不排除组效应。

该协议引入了一种光点测定,用于研究幼虫对个体光刺激的行为反应。主要实验装置由视觉刺激系统和红外光成像系统组成。在视觉刺激系统中,LED光源在琼脂板上产生一个直径为2厘米的圆形光点,对幼虫进行测试。可以使用 LED 驱动器调整光照强度。成像系统包括一个红外摄像机,除了三个为摄像机提供照明的 850 nm 红外 LED 外,还可捕获幼虫的行为。相机镜头由 850 nm 带通滤镜覆盖,以阻止视觉刺激系统的光线进入摄像机,同时允许红外光进入摄像机。因此,视觉刺激对成像的干扰是可以避免的。在本次测定中,记录和分析进入光之前、期间和之后的一段时间内个体幼虫快速反应的行为细节。

Protocol

1.果蝇幼虫的制备 准备标准介质,包括煮玉米粉(73克)、琼脂(5.6克)、大豆粉(10克)、酵母(17.3克)、糖浆(76 mL)和水(1000 mL)。 在12小时/12小时光/暗循环的房间里,在标准介质上以25°C升起所有苍蝇。 2. 准备琼脂板 准备 1.0% 琼脂溶液。在500 mL的烧杯中称量3克琼脂,并加入300 mL的蒸馏水。在断路器上放置箔纸,以防止水蒸发。在微?…

Representative Results

根据该协议,光斑测定用于研究在12小时/12小时光/暗循环室中标准介质上以25°C升起的第三星幼虫的光避光行为。在25.5°C下使用光斑测定对单个w1118幼虫进行了测试。460 nm LED 产生的光斑的平均光照强度为 0.59 μW/cm2。使用SOS软件和自定义编写的脚本12、17记录和分析幼虫进入和离开光点的整个过程。图2和<stron…

Discussion

该协议提出了光斑测定,以测试果蝇幼虫从光中逸出的能力。这种测定允许跟踪幼虫在进入之前、遇到期间和离开光斑后的行为。可以捕获和分析幼虫运动的细节。光斑测定非常简单,具有很强的实用性。整个设备的成本不高。在实验中,LED灯被用作光源。如果需要,可以替换为不同波长的光源。光照强度也可以由 LED 驱动器调整。现场最低光照强度可达1.80 pW/mm2(冷白光)。即使?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国自然科学基金(31671074)和浙江省高校基础研究基金(2019XZZX003-12)的支持。

Materials

850 nm ± 3 nm infrared-light-generating LED Thorlabs, USA PM100A Compatible Sensors: Photodiode and Thermal
Optical Power Rangea: 100 pW to 200 W
Available Sensor Wavelength Rangea: 185 nm-25 μm Display Refresh Rate: 20 Hz
Bandwidtha: DC-100 kHz
Photodiode Sensor Rangeb: 50 nA-5 mA
Thermopile Sensor Rangeb: 1 mV-1 V
AC to DC converter Thorlabs, USA S120VC Aperture Size: Ø9.5 mm
Wavelength Range: 200-1100 nm
Power Range: 50 nW-50 mW
Detector Type: Si Photodiode (UV Extended)
Linearity: ±0.5%
Measurement Uncertaintyc: ±3% (440-980 nm), ±5% (280-439 nm), ±7% (200-279 nm, 981-1100 nm)
band-pass filter Thorlabs, USA DC2100 LED Current Range: 0-2 A
LED Current Resolution: 1 mA
LED Current Accuracy: ±20 mA
LED Forward Voltage: 24 V
Modulation Frequency Range: 0-100 kHz Sine Wave
Modulation: Arbitrary
Collimated LED blue light  ELP, China USBFHD01M Max. Resolution: 1920X1080
F6.0 mm
Sensor: 1/2.7" CMOS OV2710
Compact power meter console  Ocean Optics, USA USB2000+(RAD) Dimensions: 89.1 mm x 63.3 mm x 34.4 mm
Weight: 190 g
Detector: Sony ILX511B (2048-element linear silicon CCD array)
Wavelength range: 200-850 nm
Integration time: 1 ms – 65 seconds (20 seconds typical)
Dynamic range: 8.5 x 10^7 (system); 1300:1 for a single acquisition
Signal-to-noise ratio: 250:1 (full signal)
Dark noise: 50 RMS counts
Grating: 2 (250 – 800 nm)
Slit: SLIT-50
Detector collection lens: L2
Order-sorting: OFLV-200-850
Optical resolution: ~2.0 nm FWHM
Stray light: <0.05% at 600 nm; <0.10% at 435 nm
Fiber optic connector: SMA 905 to 0.22 numerical aperture single-strand fiber
High-Power LED Driver Minhongshi, China MHS-48XY Working voltage: DC12V
Central wavelength: 850nm
high-resolution web camera Thorlabs, USA MWWHL4 Color: Warm White
Correlated Color Temperature: 3000 K
Test Current for Typical LED Power: 1000 mA
Maximum Current (CW): 1000 mA
Bandwidth (FWHM): N/A
Electrical Power: 3000 mW
Viewing Angle (Full Angle): 120˚
Emitter Size: 1 mm x 1 mm
Typical Lifetime: >50 000 h
Operating Temperature (Non-Condensing): 0 to 40 °C
Storage Temperature: -40 to 70 °C
Risk Groupa: RG1 – Low Risk Group
LED Warm White Mega-9, China BP850/22K Ø25.4(+0~-0.1) mm
Bandwidth: 22±3nm
Peak transmittance:80%
Central wavelength: 850nm±3nm 
Spectrometer  Noel Danjou Amcap9.22 AMCap is a still and video capture application with advanced preview and recording features. It is a Desktop application designed for computers running Windows 7 SP1 or later. Most Video-for-Windowsand DirectShow-compatible devices are supported whether they are cheap webcams or advanced video capture cards.
Standard photodiode power sensor  Super Dragon, China YGY-122000 Input: AC 100-240V~50/60Hz 0.8A
Output: DC 12V 2A
Thermal power sensor  Thorlabs, USA M470L3-C1 Color: Blue
Nominal Wavelengtha: 470 nm
Bandwidth (FWHM): 25 nm
Maximum Current (CW): 1000 mA
Forward Voltage: 3.2 V
Electrical Power (Max): 3200 mW
Emitter Size: 1 mm x 1 mm
Typical Lifetime: 100 000 h
Operating Temperature (Non-Condensing): 0 to 40 °C
Storage Temperature: -40 to 70 °C
Risk Groupb: RG2 – Moderate Risk Group
Thermal power sensor  Thorlabs, USA S401C Wavelength range: 190 nm-20 μm
Optical power range:10 μW-1 W(3 Wb)
Input aperture size: Ø10 mm
Active detector area: 10 mm x 10 mm
Max optical power density: 500 W/cm2 (Avg.)
Linearity: ±0.5%

References

  1. Grossfield, J. Geographic distribution and light-dependent behavior in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 68, 2669 (1971).
  2. Godoy-Herrera, R. C. L. D. The behaviour of Drosophila melanogaster larvae during pupation. Animal Behaviour. 37, (1989).
  3. Busto, M., Iyengar, B., Campos, A. R. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. Journal of Neuroscience. 19, 3337 (1999).
  4. Mazzoni, E. O., Desplan, C., Blau, J. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron. 45, 293 (2005).
  5. Keene, A. C., et al. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. Journal of Neuroscience. 31, 6527 (2011).
  6. Keene, A. C., Sprecher, S. G. Seeing the light: photobehavior in fruit fly larvae. Trends in Neurosciences. 35, (2012).
  7. Kane, E. A., et al. Sensorimotor structure of Drosophila larva phototaxis. Proceedings of the National Academy of Sciences of the United States of America. 110, E3868 (2013).
  8. Humberg, T. H., et al. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues. Nature Communications. 9. 1260, (2018).
  9. Gong, Z., et al. Two pairs of neurons in the central brain control Drosophila innate light preference. Science. 330, (2010).
  10. Yamanaka, N., et al. Neuroendocrine Control of Drosophila Larval Light Preference. Science. 341, 1113 (2013).
  11. Zhao, W., et al. A disinhibitory mechanism biases Drosophila innate light preference. Nature Communications. 10, (2019).
  12. Gong, C., et al. A Neuronal Pathway that Commands Deceleration in Drosophila Larval Light-Avoidance. Neuroscience Bulletin. Feb. 27, (2019).
  13. Larderet, I., et al. Organization of the Drosophila larval visual circuit. eLife. 6, (2017).
  14. Sawin-McCormack, E. P., Sokolowski, M. B., Campos, A. R. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. Journal of Neurogenetics. 10, (1995).
  15. Farca, L. A., von Essen, A. M., Widmer, Y. F., Sprecher, S. G. Light preference assay to study innate and circadian regulated photobehavior in Drosophila larvae. Journal of Visualized Experiments. 74 (74), e50237 (2013).
  16. Xiang, Y., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 468, 921 (2010).
  17. Gomez-Marin, A., Partoune, N., Stephens, G. J., Louis, M. Automated tracking of animal posture and movement during exploration and sensory orientation behaviors. PLoS ONE. 7, e41642 (2012).
check_url/kr/60235?article_type=t

Play Video

Cite This Article
Sun, Y., Zhou, P., Zhao, Q., Gong, Z. Light Spot-Based Assay for Analysis of Drosophila Larval Phototaxis. J. Vis. Exp. (151), e60235, doi:10.3791/60235 (2019).

View Video