Summary

Determinación de las relaciones de autoejecución e inter-(in) en albaricoque que combinan la polinización manual, la microscopía y los análisis genéticos

Published: June 16, 2020
doi:

Summary

Presentamos una metodología para establecer los requisitos de polinización de los cultivares de albaricoque (Prunus armeniaca L.) que combinan la determinación de la auto-(in)compatibilidad por microscopía de fluorescencia con la identificación del S-genotipo por análisis PCR.

Abstract

La autoincompatibilidad en Rosaceae está determinada por un sistema de autoincompatibilidad Gametophytic (GSI) que está controlado principalmente por el locus multiallelic S. En el albaricoque, la determinación de las relaciones de auto-e inter-(in)compatibilidad es cada vez más importante, ya que la liberación de un número importante de nuevos cultivares ha dado lugar al aumento de cultivares con requisitos de polinización desconocidos. Aquí, describimos una metodología que combina la determinación de la auto-(in)compatibilidad por polinización manual y microscopía con la identificación del genotipo Spor análisis de PCR. Para la determinación de auto-(in)compatibilidad, las flores en la etapa de globo de cada cultivar se recolectaron en el campo, se polinizaron a mano en el laboratorio, fijadas y teñidas con azul anilina para la observación del comportamiento del tubo de polen bajo la microscopía de fluorescencia. Para el establecimiento de relaciones de incompatibilidad entre cultivares, el ADN de cada cultivar se extrajo de hojas jóvenes y los S-alelos fueron identificados por PCR. S Este enfoque permite establecer grupos de incompatibilidad y dilucidar las relaciones de incompatibilidad entre los cultivares, lo que proporciona una valiosa información para elegir polinizadores adecuados en el diseño de nuevos huertos y para seleccionar padres apropiados en programas de cría.

Introduction

La autoincompatibilidad es una estrategia de floración para prevenir la autopolinización y promover el cruce1. En Rosaceae, este mecanismo está determinado por un sistema de autoincompatibilidad Gametophytic (GSI) que está controlado principalmente por el locus multiallelic S2. En el estilo, el gen RNase codifica el determinante Tylar S-s,un RNase3,mientras que una proteína F-box, que determina el determinante del polen S,está codificada por el gen SFB 4. La interacción de autoincompatibilidad se lleva a cabo a través de la inhibición del crecimiento del tubo de polen a lo largo del estilo evitando la fertilización del óvulo5,6.

En albaricoque, en lasúltimas,dos décadas se ha producido una renovación varietal en todo elmundo. Esta introducción de un número importante de nuevos cultivares, de diferentes programas de cría públicos y privados, ha dado lugar al aumento de cultivares de albaricoque con requisitos de polinización desconocidos8.

Se han utilizado diferentes metodologías para determinar los requisitos de polinización en el albaricoque. En el campo, la autocompatibilidad puede establecerse mediante polinizaciones controladas en árboles enjaulados o en flores emasculadas y,posteriormente,registrar el porcentaje del conjunto de frutas9,10,11,12. Además, se han realizado polinizaciones controladas en el laboratorio mediante el cultivo semi-in vivo de flores y el análisis del comportamiento del tubo de polen bajo microscopía de fluorescencia8,13,14,15,16,17. Recientemente, las técnicas moleculares, como el análisis de PCR y la secuenciación, han permitido caracterizar las relaciones de incompatibilidad basadas en el estudio de los genes RNase y SFB 18,,19. En el caso del albaricoque, se han notificado treinta y tres S-aleles (S1 a S20, S22 a S30, S52, S53, Sv, Sx), incluyendo un alelo relacionado con la autocompatibilidad (Sc)12,18,20,21,22,23,24. Hasta ahora, 26 grupos de incompatibilidad han sido estabilizados en esta especie según el S-genotipo8,9,17,25,26,27. Los cultivares Scon los mismos S-aleles son inter-incompatibles, mientras que los cultivares con al menos un S-allelediferente y, en consecuencia, asignados en diferentes grupos incompatibles, son inter-compatibles.

Para definir los requisitos de polinización de los cultivares de albaricoque, describimos una metodología que combina la determinación de la auto-(in)compatibilidad por microscopía de fluorescencia con la identificación del genotipo Spor análisis de PCR en cultivares de albaricoque. Este enfoque permite establecer grupos de incompatibilidad y dilucidar las relaciones de incompatibilidad entre cultivares.

Protocol

1. Determinación de auto-(in)compatibilidad Pruebe las flores en el campo. Es necesario recoger las flores en la etapa de globo(Figura 1A), correspondiente a la etapa 58 en la escala BBCH para el albaricoque28,para evitar la polinización previa no deseada. Autonuquinaciones cruzadas y autonúditos en el laboratorio Retire las anteras de las flores en la etapa del globo y colóquelas en un pedazo de pap…

Representative Results

Los estudios de polinización en albaricoque requieren el uso de flores en la etapa tardía del globo un día antes de la antítesis (Figura 1A). Esta etapa se considera la más favorable para la recolección de polen y pistilo, ya que las estructuras florales están casi maduras, pero la dehiscencia de las anteras aún no se ha producido. Esto evita la interferencia del polen no deseado, no sólo de polen de la misma flor sino también de otras flores, ya que los pétalos c…

Discussion

Tradicionalmente, la mayoría de los cultivares europeos de albaricoque comercial eran autocomprobados36. Sin embargo, el uso de cultivares autoincom incompatibles de América del Norte como padres en programas de cría en las últimas décadas ha dado lugar a la liberación de un número creciente de nuevos cultivares autoincom incompatibles con requisitos de polinización desconocidos7,,8,,37. Por lo ta…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Esta investigación fue financiada por ministerio de ciencia, Innovación y Universidades-Fondo Europeo de Desarrollo Regional, Unión Europea (AGL2016-77267-R, y AGL2015-74071-JIN); Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RFP2015-00015-00, RTA2017-00003-00); Gobierno de Aragón-Fondo Social Europeo, Unión Europea (Grupo Consolidado A12_17R), Fundación Biodiversidad y Agroseguro S.A.

Materials

Agarose D1 Low EEO Conda 8010.22
BIOTAQ DNA Polymerase kit Bioline BIO-21060
Bright field microscope Leica Microsystems DM2500
CEQ System Software Beckman Coulter
DNeasy Plant Mini Kit QIAGEN 69106
dNTP Set, 4 x 25 µmol Bioline BIO-39025
GenomeLab DNA Size Standard Kit – 400 Beckman Coulter 608098
GenomeLab GeXP Genetic Analysis System Beckman Coulter
GenomeLab Separation Buffer Beckman Coulter 608012
GenomeLab Separation Gel LPA-1 Beckman Coulter 391438
HyperLadder 100bp Bioline BIO-33029
HyperLadder 1kb Bioline BIO-33025
Image Analysis System Leica Microsystems
Molecular Imager VersaDoc MP 4000 system  Bio-Rad 170-8640
NanoDrop One Spectrophotometer Thermo Fisher Scientific 13-400-518
pH-Meter BASIC 20 Crison
Phusion High-Fidelity PCR Kit Thermo Fisher Scientific F553S
Power Pack P 25 T Biometra
Primer Forward Isogen Life Science
Primer Reverse Isogen Life Science
Quantity One Software Bio-Rad
Stereoscopic microscope Leica Microsystems MZ-16
Sub-Cell GT Bio-Rad
SYBR Safe DNA Gel Stain Thermo Fisher Scientific S33102
T100 Thermal Cycler Bio-Rad 1861096
Taq DNA Polymerase QIAGEN 201203
Vertical Stand Autoclave JP Selecta

References

  1. Silva, N. F., Goring, D. R. Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences. 58, 1988-2007 (2001).
  2. Charlesworth, D., Vekemans, X., Castric, V., Glémin, S. Plant self-incompatibility systems: A molecular evolutionary perspective. New phytologist. 168, 61-69 (2005).
  3. Tao, R., et al. Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant and Cell Physiology. 38, 304-311 (1997).
  4. Ushijima, K., et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. The Plant cell. 15, 771-781 (2003).
  5. Bedinger, P. A., Broz, A. K., Tovar-Mendez, A., McClure, B. Pollen-Pistil Interactions and Their Role in Mate Selection. Plant Physiology. 173, 79-90 (2017).
  6. Guerra, M. E., Rodrigo, J. Japanese plum pollination: A review. Scientia Horticulturae. 197, 674-686 (2015).
  7. Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llacer, G., Badenes, M. L., Byrne, D. Apricot. Fruit Breeding. , 415-458 (2012).
  8. Herrera, S., Lora, J., Hormaza, J. I., Herrero, M., Rodrigo, J. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, S-RNase Allele Identification, and Incompatibility Group Assignment. Frontiers in Plant Science. 9, 527 (2018).
  9. Egea, J., Burgos, L. Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. Journal of the American Society for Horticultural Science. 121, 1002-1005 (1996).
  10. Rodrigo, J., Herrero, M. Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae. 92, 125-135 (2002).
  11. Julian, C., Herrero, M., Rodrigo, J. Flower bud differentiation and development in fruiting and non-fruiting shoots in relation to fruit set in apricot (Prunus armeniaca). Trees. 24, 833-841 (2010).
  12. Muñoz-Sanz, J. V., Zuriaga, E., López, I., Badenes, M. L., Romero, C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC Plant Biology. 17, 82 (2017).
  13. Burgos, L., Berenguer, T., Egea, J. Self- and Cross-compatibility among Apricot Cultivars. HortScience. 28, 148-150 (1993).
  14. Rodrigo, J., Herrero, M. Evaluation of pollination as the cause of erratic fruit set in apricot “Moniqui”. Journal of Horticultural Science. 71, 801-805 (1996).
  15. Milatović, D., Nikolić, D., Krška, B. Testing of self-(in)compatibility in apricot cultivars from European breeding programmes. Horticultural Science. 40 (2), 65-71 (2013).
  16. Milatović, D., Nikolić, D., Fotirić-Aksić, M., Radović, A. Testing of self-(in)compatibility in apricot cultivars using fluorescence microscopy. Acta Scientiarum Polonorum, Hortorum Cultus. 12 (6), 103-113 (2013).
  17. Herrera, S., Rodrigo, J., Hormaza, J. I., Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int J Mol Sci. 19, 3612 (2018).
  18. Romero, C., et al. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Molecular Biology. 56, 145-157 (2004).
  19. Halász, J., Pedryc, A., Hegedus, A. Origin and dissemination of the pollen-part mutated SC haplotype which confers self-compatibility in apricot (Prunus armeniaca). New Phytologist. 176, 792-803 (2007).
  20. Halász, J., Hegedus, A., Hermán, R., Stefanovits-Bányai, &. #. 2. 0. 1. ;., Pedryc, A. New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica. 145, 57-66 (2005).
  21. Vilanova, S., Romero, C., Llacer, G., Badenes, M. L., Burgos, L. Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. Journal of the American Society for Horticultural Science. 130, 893-898 (2005).
  22. Feng, J., et al. Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Molecular Biology Reports. 33, 215-221 (2006).
  23. Zhang, L., et al. Identification of self-incompatibility (S-) genotypes of Chinese apricot cultivars. Euphytica. 160, 241-248 (2008).
  24. Wu, J., et al. Identification of S-haplotype-specific S-RNase and SFB alleles in native Chinese apricot (Prunus armeniaca L). Journal of Horticultural Science and Biotechnology. 84, 645-652 (2009).
  25. Szabó, Z., Nyéki, J. Blossoming, fructification and combination of apricot varieties. Acta Horticulturae. 293, 295-302 (1991).
  26. Halász, J., Pedryc, A., Ercisli, S., Yilmaz, K. U., Hegedűs, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. Journal of the American Society for Horticultural Science. 135, 410-417 (2010).
  27. Lachkar, A., et al. Identification of self-(in)compatibility S-alleles and new cross-incompatibility groups in Tunisian apricot (Prunus armeniaca L.) cultivars. The Journal of Horticultural Science and Biotechnology. 88, 497-501 (2013).
  28. Pérez-Pastor, A., Ruiz-Sánchez, M. C., Domingo, R., Torrecillas, A. Growth and phenological stages of Búlida apricot trees in South-East. Agronomie. 24, 93-100 (2004).
  29. Williams, J. H., Friedman, W. E., Arnold, M. L. Developmental selection within the angiosperm style: using gamete DNA to visualize interspecific pollen competition. Proceedings of the National Academy of Sciences of the United States of America. 96, 9201-9206 (1999).
  30. Julian, C., Herrero, M., Rodrigo, J. Anther meiosis time is related to winter cold temperatures in apricot (Prunus armeniaca L.). Environmental and Experimental Botany. 100, 20-25 (2014).
  31. Guerra, M. E., López-Corrales, M., Wünsch, A., Rodrigo, J. Lack of Fruit Set Caused by Ovule Degeneration in Japanese Plum. Journal of the American Society for Horticultural Science. 136 (6), 375-381 (2011).
  32. Guerra, M. E., Wünsch, A., López-Corrales, M., Rodrigo, J. Flower Emasculation as the Cause for Lack of Fruit Set in Japanese Plum Crosses. Journal of the American Society for Horticultural Science. 135 (6), 556-562 (2010).
  33. Hormaza, J. I., Pinney, K., Polito, V. S. Correlation in the tolerance to ozone between sporophytes and male gametophytes of several fruit and nut tree species (Rosaceae). Sexual Plant Reproduction. 9, 44-48 (1996).
  34. Alcaraz, M. L., Hormaza, J. I., Rodrigo, J. Pistil Starch Reserves at Anthesis Correlate with Final Flower Fate in Avocado (Persea americana). PLOS ONE. 8 (10), 78467 (2013).
  35. Tao, R., et al. Molecular typing of S-alleles through Identification, Characterization and cDNA cloning for S-RNases in Sweet Cherry. Journal of the American Society for Horticultural Science. 124, 224-233 (1999).
  36. Burgos, L., et al. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. Journal of Horticultural Science. 72, 147-154 (1997).
  37. Hormaza, J. I., Yamane, H., Rodrigo, J., Kole, C. Apricot. Genome Mapping and Molecular Breeding in Plants, Volume 4 Fruits and Nuts. , 171-187 (2007).
  38. Benmoussa, H., Ghrab, M., Ben Mimoun, M., Luedeling, E. Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agricultural and Forest Meteorology. 239, 34-46 (2017).
  39. Rodrigo, J., Herrero, M., Hormaza, J. I. Pistil traits and flower fate in apricot (Prunus armeniaca). Annals of Applied Biology. 154, 365-375 (2009).
  40. Williams, R. R., Williams, R. R., Wilson, D. Techniques used in fruit-set experiments. Towards Regulated Cropping. , 57-61 (1970).
  41. Sutherland, B. G., Robbins, T. P., Tobutt, K. R. Primers amplifying a range of Prunus S-alleles. Plant Breeding. 123, 582-584 (2004).
  42. Murray, M. G., Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 8, 4321-4325 (1980).
  43. Porebski, S., Bailey, L. G., Baum, B. R. Modification of a CTAB DNA Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol Components. Plant Molecular Biology Reporter. 15 (1), 8-15 (1997).
  44. Rogers, S. O., Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology. 5 (2), 69-76 (1985).
  45. Hormaza, J. I. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics. 104, 321-328 (2002).
  46. Sonneveld, T., Tobutt, K. R., Robbins, T. P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theoretical and Applied Genetics. 107, 1059-1070 (2003).
  47. Hegedus, A., Lénárt, J., Halász, J. Sexual incompatibility in Rosaceae fruit tree species: molecular interactions and evolutionary dynamics. Biologia Plantarum. 56 (2), 201-209 (2012).
  48. Fernández i Martí, A., Gradziel, T. M., Socias i Company, R. Methylation of the Sf locus in almond is associated with S-RNase loss of function. Plant Molecular Biology. 86, 681-689 (2014).
  49. Company, R. S. i., Kodad, O., Martí, A. F. i., Alonso, J. M. Mutations conferring self-compatibility in Prunus species: From deletions and insertions to epigenetic alterations. Scientia Horticulturae. 192, 125-131 (2015).
  50. Boskovic, R., Tobutt, K. R. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica. 90, 245-250 (1996).
  51. Cachi, A. M., Wünsch, A. S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphytica. 197 (2), 229-236 (2014).
  52. Zuriaga, E., et al. An S-locus Independent Pollen Factor Confers Self-Compatibility in “Katy” Apricot. PLoS ONE. 8 (1), 53947 (2013).
check_url/kr/60241?article_type=t

Play Video

Cite This Article
Herrera, S., Lora, J., Hormaza, J. I., Rodrigo, J. Determination of Self- and Inter-(in)compatibility Relationships in Apricot Combining Hand-Pollination, Microscopy and Genetic Analyses. J. Vis. Exp. (160), e60241, doi:10.3791/60241 (2020).

View Video