Summary

Kıvılcım Susturma: CRISPR/Cas9 Zayıf Elektrikli Balıklarda Genom Düzenleme

Published: October 27, 2019
doi:

Summary

Burada CRISPR/Cas9 genom nakavt elektrikli balık üretimi ve arkası için bir protokol sunulmuştur. Ayrıntılı olarak özetlenen bir gymnotiform ve mormyrid hem de gerekli moleküler biyoloji, Üreme ve hayvancılık gereksinimleri ve cas9 indel F0 larvaları üretmek için enjeksiyon teknikleri vardır.

Abstract

Omurgalıların evrimsel tarihinde elektroresepsiyon ve elektrogenez değişmiştir. Ortak bir genetik mimariyi paylaşan bu bağımsız olarak elde edilen fenotiplerde çarpıcı bir yakınsama derecesi vardır. Bu belki de en iyi gymnotiforms ve mormyrids, üretmek ve zayıf elektrik alanları tespit ve zayıf elektrikli balık denir iki tür zengin teleost clades sayısız yakınsak özellikleri ile örneklenir. Zayıf elektrikli balıkların çevrelerini algılamak ve iletişim kurmak için elektriği kullandıklarının keşfinden bu yana geçen 50 yıl içinde, büyüyen bir bilim adamı topluluğu, gelişim, sistem ve devrelerin nörolojisinin evrimi hakkında muazzam bir içgörü kazandı. hücresel fizyoloji, ekoloji, evrimsel biyoloji ve davranış. Daha yakın zamanlarda, elektrikli balıklar için genomik kaynakların çoğalması olmuştur. Bu kaynakların kullanımı zaten bu türlerde genotip ve fenotip arasındaki bağlantı ile ilgili önemli anlayışlar kolaylaştırmıştır. Genomik verilerin zayıf elektrikli balıkların henotik verileriyle bütünleştirilmesinin önündeki en büyük engel, mevcut fonksiyonel genomik araçlarının eksikliğidir. Burada zayıf elektrikli balıklarda endojen DNA onarım mekanizmaları kullanan CRISPR/Cas9 mutagenezinin icrası için tam bir protokol sunacağız. Bu protokolün hem mormyrid türü Brienomyrus brachyistius hem de gymnotiform Brakihypopomus gauderio’da CRISPR/Cas9 kullanarak indels ve nokta mutasyonlarını hedef alarak eşit derecede etkili olduğunu gösteriyoruz. sodyum kanal gen scn4aa. Bu protokol kullanılarak, her iki türden de embriyolar elde edildi ve scn4aa sodyum kanalının ilk eksonlarında öngörülen mutasyonların mevcut olduğunu doğrulamak için genotiplendi. Nakavt başarı fenotip enjekte edilmemiş boyut eşleşen kontroller ile karşılaştırıldığında azaltılmış elektrik organı deşarj genlikleri gösteren kayıtları ile doğrulandı.

Introduction

Omurgalıların evrimsel tarihinde elektroresepsiyon ve elektrogenez değişmiştir. Teleost balık iki soy, osteoglossiformes ve siluriformes, paralel olarak elektroresepsiyon gelişti, ve teleostların beş lineages (gymnotiformes, mormyrids, ve cins Astroscopus, Malapterurus, ve Synodontis) paralel olarak gelişen elektrogenez. Ortak bir genetik mimari1,2,3paylaşan bu bağımsız olarak türetilmiş fenotipler, yakınsama çarpıcı bir derecesi vardır.

Bu belki de en iyi gymnotiforms ve mormyrids, üretmek ve zayıf elektrik alanları tespit ve zayıf elektrikli balık denir iki tür zengin teleost clades, sayısız yakınsak özellikleri ile örneklenir. 50 yıl içinde zayıf elektrik balık çevrelerini algılamak ve iletişim kurmak için elektrik kullanımı keşfinden bu yana4, bilim adamlarının büyüyen bir toplulukgelişme1,5 evrimi içine muazzam anlayışlar kazanmıştır ,6, sistemleri ve devrelerinörolojik 7,8,9,10, hücresel fizyoloji11,12, ekoloji ve enerji13 ,14,15,16,17, davranış18,19, ve makroevrim3,20,21 .

Daha yakın zamanda, elektrik balıkları için genomik, transkripsiyonik ve proteomik kaynakların çoğalması olmuştur1,22,23,24,25,26, 27,28. Bu kaynakların kullanımı zaten bu türlerde genotip ve fenotip arasındaki bağlantı ile ilgili önemli anlayışlar üretti1,2,3,28,29 ,30. Zayıf elektrikli balıkların henotik verileri ile genomik verilerin entegre edilmesinin önündeki en büyük engel, fonksiyonel genomik aletlerin mevcut eksikliğidir31.

Bu araçlardan biri, Cas9 endondüraz (CRISPR/Cas9, CRISPR) tekniği ile eşleştirilmiş son zamanlarda geliştirilen Kümelenmiş Düzenli Aralıklı Kısa Palindromik Tekrarlar’dır. CRISPR/Cas9 hem model32,33,34 hem de model olmayanorganizmalarda 35,36,37 hem de yaygın kullanıma girmiş bir genom düzenleme aracıdır. CRISPR/Cas9 teknolojisi, temel moleküler biyoloji yeteneğine sahip bir laboratuvarın klonlamayan bir yöntemi kullanarak düşük maliyetle kısa kılavuz RNA (sgRNA) adı verilen genlere özgü probları kolayca üretebileceği bir noktaya gelmiştir38. CRISPR morpholinos39,40, transkripsiyon aktivatör benzeri efektör nükleazlar (TALENs) ve çinko parmak çekirdekleri (ZFNs) gibi diğer nakavt / nakavt stratejileri, üzerinde avantajları vardır ve pahalı ve her hedef gen için üretmek için zaman alıcı.

CRISPR/Cas9 sistemi, genomun belirli bir bölgesini hedef alarak, sgRNA dizisi tarafından yönlendirilerek ve çift iplikli bir kopmaya neden olarak gen nakavtları oluşturmak için işlev görür. Çift iplikli kopma hücre tarafından tespit edilir ve homolog olmayan son birleştirme (NHEJ) yolu kullanılarak tercihen endojen DNA onarım mekanizmalarını tetikler. Bu yol son derece hata yatkındır: onarım işlemi sırasında, DNA molekülü genellikle çift iplikli mola yerinde eklemeler veya silmeler (indels) dahil edecektir. Bu indels ya (1) açık okuma çerçevesi vardiya, (2) erken stop codon ekleme veya (3) gen ürünün kritik birincil yapısında vardiya nedeniyle fonksiyon kaybına neden olabilir. Bu protokolde, zayıf elektrikli balık türlerinde NHEJ’yi kullanarak hedef genlerdeki nokta mutasyonlarını hedeflemek için CRISPR/Cas9 düzenlemesini kullanıyoruz. Diğer tekniklere göre daha basit ve daha verimli olsa da, bu mutagenez yönteminin genetik mozaisizme atfedilen F0’dabir dizi fenotipik şiddeti ile sonuçlanması beklenmektedir, bu da genetik mozailiğe atfedilir41,42,43 ,44.

Organizmaların Seçimi
Zayıf elektrikli balıkların karşılaştırmalı genomikleri üzerinde gelecekteki çalışmaları kolaylaştırmak amacıyla, protokol gelişimi için hem gymnotiforms hem de mormyrids için temsili bir tür seçilmelidir. Uruguay’ın Montevideo kentinde düzenlenen 2016 Elektrikli Balık toplantısı nın ardından, laboratuvarda yetiştirilebilecek ve genomik kaynaklara sahip türleri kullanmak için topluluk konusunda fikir birliği sağlandı. Gymnotiform Brakihipopomus gauderio ve mormyrid Brienomyrus brachyistius bu kriterlere uygun türler olarak seçildi. Her iki türde de üreme koşullarını tetiklemek ve sürdürmek için doğal ipuçları esaret altında taklit etmek kolaydır. B. gauderio, Güney Amerika’dan bir gymnotiform türler, düşük hayvancılık gereksinimleri avantajı vardır: balık nispeten küçük (4 L) tanklarda nispeten yüksek yoğunlukta tutulabilir. B. gauderio da esir koşullar altında hızlı nesil cirosuvardır. Laboratuvar koşullarında, B. gauderio yaklaşık 4 ay içinde yumurtadan yetişkine gelişebilir.

B. Brachyistius, Batı-Orta Afrika mormyrid balık bir tür, kolayca esaret içinde ürerler. B. brachyistius akvaryum ticareti yoluyla kolayca kullanılabilir, yaygın birçok çalışmada kullanılmıştır, ve şimdi genomik kaynakların bir dizi mevcuttur. Yaşam döngüleri laboratuvar koşullarına bağlı olarak 1−3 yıl sürer. Hayvancılık gereksinimleri bu tür için biraz daha yoğundur ve üreme sırasındaki saldırganlıkları nedeniyle orta büyüklükte tanklara (50−100 L) ihtiyaç vardır.

Diğer elektrikli balık türlerini inceleyen laboratuvarlar, türler yetiştirilebildiği ve tek hücreli embriyoların toplanıp yetişkinliğe kadar yetiştirilebildiği sürece bu protokolü kolayca uyarlayabilmeli. Konut, larva yetiştiriciliği ve in vitro fertilizasyon (IVF) oranları diğer türler ile birlikte büyük olasılıkla değişecektir; ancak, bu protokol diğer zayıf elektrikli balıkların üreme girişimleri için bir başlangıç noktası olarak kullanılabilir.

Kavram Kanıtı için İdeal Bir Gen Hedefi: scn4aa
Zayıf elektrikli mormyrid ve gymnotiform balık elektrik organı olarak adlandırılan özel bir organ, boşaltarak elektrik alanları (elektrogenez) oluşturmak. Elektrik organ deşarjları (EODs) elektrosit adı verilen elektrik organ hücrelerinde eylem potansiyellerinin eşzamanlı üretimi sonucu. EOD’ler, balığın çevresinin yüksek çözünürlüklü elektriksel görüntülerini oluşturmak için derideki bir dizi elektroreseptör tarafından tespit edilir45. Zayıf elektrikli balıklar da kendi conspecifics ‘EOD dalga formları özellikleri tespit yeteneğine sahiptir18 yanı sıra deşarj oranları46, EODs kuş şarkısı veya kurbağa benzer bir sosyal iletişim sinyali olarak ek olarak çalışmasına izin vokalizasyon47.

Hem mormyrid ve gymnotiform zayıf elektrikli balık elektrositlerde eylem potansiyel nesil bir ana bileşeni voltaj kapılı sodyum kanalı NaV1.42. Elektrik olmayan teleosts iki paralogus gen kopyaları ifade, scn4aa ve scn4ab, voltaj kapılı sodyum kanalı NaV1.430için kodlama . Hem gymnotiform ve mormyrid zayıf elektrikli balık soyları, scn4aa hızla gelişti ve kinetik özelliklerini etkileyen çok sayıda amino asit ikameleri uğramıştır48. En önemlisi, scn4aa elektrik organı2,3her iki soy da bölümlere ayrılmıştır . Elektrik organına scn4aa nispeten sınırlı ifade, yanı sıra EODs üretiminde ki kilit rolü, CRISPR / Cas9 nakavt deneyleri için ideal bir hedef yapar, minimal zararlı pleiotropic etkileri olduğu gibi. Zayıf elektrikli balıklar larva elektrik organlarını 6−8 gün sonra döllenme (DPF) boşaltmaya başladıklarından, scn4aa’nın hedeflenmesi embriyo mikroenjeksiyonunu takiben hızlı fenotipleme için idealdir.

Protocol

Burada açıklanan tüm yöntemler Michigan State Üniversitesi Kurumsal Hayvan Bakım ve Kullanım Komitesi (IACUC) tarafından onaylanmıştır. 1. SGRNA Hedeflerinin Seçilmesi NOT: Adım 1.1’de sgRNA’ların manuel tasarımı için bir protokol sağlanmıştır. Bu scn4aa hedef seçimi için kullanılmıştır. EFISHGENOMICS web portalı kullanılarak bu işlemi kolaylaştırmak için ek bir protokol (adım 1.2) sağlanmaktadır. Kullanıc…

Representative Results

SGRNA hedef bölgeleri Bölüm 1’de açıklandığı gibi Hem B. gauderio hem de B. brachyistius’ta scn4aa’nın eksex 1’inde tanımlanmıştır. SGRNA’lar Bölüm 2’de açıklandığı şekilde oluşturuldu. Başarılı sgRNA seçimi ve sentezinden sonra(Şekil 1),in vitro dekolte test edildi (Şekil 2). İn vitro kesim gösteren sgRNA’lar daha sonra tek hücreli mikroenjeksiyonlar için seçildi. Erişkin b…

Discussion

Zayıf elektrikli balıkların fenotipik zenginliği, genomik kaynakların yakın zamanda çoğalması ile birlikte, zayıf elektrikli balık modelinde fonksiyonel genomik araçlara yönelik güçlü bir ihtiyacı motive eder. Bu sistem, laboratuvarda kolayca tutulan paralel balık soylarında çok sayıda fenotipik özelliğin yakınsak evrimi nedeniyle özellikle çekicidir.

Burada açıklanan protokol, CRISPR/Cas9 tekniğinin elektrogenez ve elektroalımı paralel olarak evrimleşen zayıf …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Yazarlar Monica Lucas, Katherine Shaw, Ryan Taylor, Jared Thompson, Nicole Robichaud ve Hope Healey’in balık yetiştiriciliği, veri toplama ve erken protokol geliştirme konusunda yardımcı olmak için gösterdiği kahramanca çabaları kabul etmektedirler. Ayrıca üç yorumcuya da makaleye verdikleri öneriler için teşekkür ederiz. Biz nihai ürün yorumlarını ele sonra daha kaliteli olduğuna inanıyoruz. Bu çalışma Ulusal Bilim Vakfı #1644965 ve JRG #1455405 ve Doğa Bilimleri ve Mühendislik Araştırma Konseyi DG hibe VLS desteği ile finanse edilmiştir.

Materials

20 mg/mL RNA grade Glycogen Thermo Scientific R0551
50 bp DNA ladder NEB N3236L
borosilicate glass capillary with filament Sutter Instrument BF100-58-10 (O.D. 1.0mm, I.D. 0.58 mm, 10 cm length)
Cas9 protein with NLS; 1 mg/mL PNA Biology CP01
Dneasy Blood & Tissue Kit Qiagen 69506
Eppendorf FemptoJet 4i Microinjector Fisher Scientific E5252000021
Eppendorf Microloader Pipette Tips Fisher Scientific 10289651
Hamilton syringe Fisher Scientific 14-824-654 referred to as "precision glass syringe" in the protocol
Kimwipe Fisher Scientific 06-666 referred to as "delicate task wipe" in the protocol
MEGAscript T7 Transcription Kit Invitrogen AM1334
NEBuffer 3 NEB B7003S used for in vitro cleavage assay
OneTaq DNA kit NEB M0480L
Ovaprim Syndel USA https://www.syndel.com/ovaprim-ovammmlu010.html referred to as "spawning agent" in the protocol
Parafilm Fisher Scientific S37440 referred to as "thermoplastic" in the protocol
Pipette puller WPI SU-P97 sutter brand
QIAquick PCR Purification Kit Qiagen 28106
Reusable needle- requires customization Fisher Scientific 7803-02 Customize to 0.7 inches long; point style 4 and angle 25
T4 DNA polymerase NEB M0203L Use with the 10X NEB buffer that is included
Teflon coated tools bonefolder.com T-SPATULA4PIECE referred to as "polytetrafluoroethene" in the protocol

References

  1. Gallant, J. R., et al. Genomic basis for the convergent evolution of electric organs. Science. 344 (6191), 1522-1525 (2014).
  2. Zakon, H. H., Lu, Y., Zwickl, D. J., Hillis, D. M. Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America. 103 (10), 3675-3680 (2006).
  3. Arnegard, M. E., Zwickl, D. J., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system–twice. Proceedings of the National Academy of Sciences of the United States of America. 107, 22172-22177 (2010).
  4. Lissmann, H. W. Continuous electrical signals from the tail of a fish. Gymnarchus niloticus Cuv. Nature. 167 (4240), 201-202 (1951).
  5. Cuellar, H., Kim, J. A., Unguez, G. A. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB Journal. 20 (14), 2540 (2006).
  6. Modrell, M. S., Baker, C. V. Evolution of electrosensory ampullary organs: conservation of Eya4 expression during lateral line development in jawed vertebrates. Evolution & Development. 14 (3), 277-285 (2012).
  7. Hopkins, C. D. Design features for electric communication. Journal of Experimental Biology. 202, 1217-1228 (1999).
  8. Kawasaki, M. Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Current Opinion in Neurobiology. 7 (4), 473-479 (1997).
  9. Bell, C. C., Han, V. Z., Sugawara, Y., Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 (6630), 278-281 (1997).
  10. Heiligenberg, W. . Neural Nets in Electric Fish. , (1991).
  11. Ban, Y., Smith, B. E., Markham, M. R. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter. Journal of Neurophysiology. 114 (1), 520-530 (2015).
  12. Markham, M. R., Kaczmarek, L. K., Zakon, H. H. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. Journal of Neurophysiology. 109 (7), 1713-1723 (2013).
  13. Gavassa, S., Stoddard, P. K. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish. Hormones and Behavior. 62 (4), 381-388 (2012).
  14. Sinnett, P. M., Markham, M. R. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Hormones and Behavior. 71, 31-40 (2015).
  15. Salazar, V. L., Stoddard, P. K. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. Journal of Experimental Biology. 211, 1012-1020 (2008).
  16. Lewis, J. E., Gilmour, K. M., Moorhead, M. J., Perry, S. F., Markham, M. R. Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. Journal of Neuroscience. 34 (1), 197-201 (2014).
  17. Salazar, V. L., Krahe, R., Lewis, J. E. The energetics of electric organ discharge generation in gymnotiform weakly electric fish. Journal of Experimental Biology. 216 (13), 2459-2468 (2013).
  18. Hopkins, C. D., Bass, A. Temporal coding of species recognition signals in an electric fish. Science. 212 (4490), 85-87 (1981).
  19. Arnegard, M. E., Jackson, B. S., Hopkins, C. D. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. The Journal of Experimental Biology. 209, 2182-2198 (2006).
  20. Sullivan, J. P., Lavoue, S., Arnegard, M. E., Hopkins, C. D. AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution. 58 (4), 825-841 (2004).
  21. Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. Journal of Fish Biology. 53, 307-330 (1998).
  22. Pinch, M., Guth, R., Samanta, M. P., Chaidez, A., Unguez, G. A. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome. PeerJ. 4, 1828 (2016).
  23. Lamanna, F., Kirschbaum, F., Waurick, I., Dieterich, C., Tiedemann, R. Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics. 16, 668 (2015).
  24. Traeger, L. L., et al. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics. 16, 243 (2015).
  25. Salisbury, J. P., et al. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genomics. 16, 166 (2015).
  26. Lamanna, F., Kirschbaum, F., Tiedemann, R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Molecular Ecology Resources. 14 (6), 1222-1230 (2014).
  27. Mate, S. E., Brown, K. J., Hoffman, E. P. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skeletal Muscle. 1 (1), 20 (2011).
  28. Swapna, I., et al. Electrostatic Tuning of a Potassium Channel in Electric Fish. bioRxiv. , (2017).
  29. Futuyma, . Evolution. Third Edition. , (2013).
  30. Thompson, A., Vo, D., Comfort, C., Zakon, H. H. Expression Evolution Facilitated the Convergent Neofunctionalization of a Sodium Channel Gene. Molecular Biology and Evolution. 31 (8), 1941-1955 (2014).
  31. Pitchers, W. R., Constantinou, S. J., Losilla, M., Gallant, J. R. Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Physiology Paris. , (2016).
  32. Liang, X., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology. 208, 44-53 (2015).
  33. Jung, C. J., et al. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Research. 26 (2), 263-277 (2017).
  34. Liu, K., Petree, C., Requena, T., Varshney, P., Varshney, G. K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology. 7 (13), (2019).
  35. Zu, Y., et al. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Scientific Reports. 6, 23496 (2016).
  36. Crispo, M., et al. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One. 10 (8), 0136690 (2015).
  37. Sun, D., Guo, Z., Liu, Y., Zhang, Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology. 8, 608 (2017).
  38. Gagnon, J. A., et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One. 9 (5), 98186 (2014).
  39. Kok, F. O., et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell. 32 (1), 97-108 (2015).
  40. Morcos, P. A., Vincent, A. C., Moulton, J. D. Gene Editing Versus Morphants. Zebrafish. 12 (5), 319 (2015).
  41. Mehravar, M., Shirazi, A., Nazari, M., Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. 발생학. 445 (2), 156-162 (2019).
  42. Yen, S. T., et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. 발생학. 393 (1), 3-9 (2014).
  43. Singh, P., Schimenti, J. C., Bolcun-Filas, E. A Mouse Geneticist’s Practical Guide to CRISPR Applications. 유전학. 199 (1), 1-15 (2015).
  44. Mianné, J., et al. Analyzing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods. 121-122, 68-76 (2017).
  45. van der Emde, G., Breed, M. D., Moore, J. . Encyclopedia of Animal Behavior. 1, 16-23 (2010).
  46. Carlson, B. A., Binder, M. D., Hirokawa, N., Windhorst, U., Hirsch, M. C. . Encyclopedia of Neuroscience. , 4039-4044 (2009).
  47. Hopkins, C. D. Neruoethology of Electric Communication. Annual Reviews of Neuroscience. 11, 497-535 (1988).
  48. Arnegard, M., Zwickl, D., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system- twice. Proceedings of the National Academy of Sciences of the United States of America. 107 (51), 22172-22177 (2010).
  49. Doench, J. G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology. 32 (12), 1262-1267 (2014).
  50. Concordet, J. P., Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Resarch. 46, 242-245 (2018).
  51. Haeussler, M., et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology. 17 (1), 148 (2016).
  52. Kirschbaum, F. Environmental factors control the periodical reproduction of tropical electric fish. Experientia. 31 (10), 1159-1160 (1975).
  53. Iwama, G. K., McGeer, J. C., Pawluk, M. P. The effects of five fish anaesthetics on acid-base balance, hematocrit, cortisol and adrenaline in rainbow trout. Canadian Journal of Zoology. 67, 2065-2073 (1989).
  54. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. , (2000).
  55. Barrangou, R., Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nature Biotechnology. 34 (9), 933-941 (2016).
  56. Adli, M. The CRISPR tool kit for genome editing and beyond. Nature Communications. 9 (1), 1911 (2018).
  57. Maruyama, T., et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology. 33 (5), 538-542 (2015).
  58. Liu, M., et al. Methodologies for Improving HDR Efficiency. Frontiers in Genetics. 9, 691 (2018).
  59. Kirschbaum, F., et al. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. Journal of Physiology Paris. 110, 281-301 (2016).
  60. Jao, L. E., Wente, S. R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Science of the United States of America. 110 (34), 13904-13909 (2013).

Play Video

Cite This Article
Constantinou, S. J., Nguyen, L., Kirschbaum, F., Salazar, V. L., Gallant, J. R. Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish. J. Vis. Exp. (152), e60253, doi:10.3791/60253 (2019).

View Video