Summary

检查胡萝卜体瘦素信号的实验方法及其对呼吸控制的影响

Published: October 25, 2019
doi:

Summary

我们的研究侧重于胡萝卜素体 (CB) 中的瘦素信号对低氧通气反应 (HVR) 的影响。进行了”功能丧失”实验,测量瘦素在CB变性后对HVR的影响,在CB中瘦素受体过度表达后测量HVR的”功能增益”实验。

Abstract

脂肪细胞产生的激素瘦素是一种有效的呼吸兴奋剂,在保护肥胖的呼吸功能方面可能起着重要作用。胡萝卜体(CB)是周围缺氧敏感性的关键器官,表达瘦素受体(LepRb)的长功能异形,但瘦素信号在控制呼吸中的作用尚未完全阐明。我们检查了C57BL/6J小鼠在基线和CB脱液后输液前后的低氧通气反应(HVR)(1);(2) 在LepRb– 缺乏肥胖的 db/db小鼠在基线和后 LepRb在 CB 的过度表达。在C57BL/6J小鼠中,瘦素增加HVR,瘦素对HVR的影响被CB变性所废除。在db/db小鼠中,CB 中的 LepRb表达式增强了 HVR。因此,我们得出结论,瘦素在CB的作用,以增强对缺氧的反应。

Introduction

脂肪细胞产生激素瘦素作用下丘脑抑制食物摄入量和增加代谢率。在我们的实验室1,2和其他研究者3,4进行的研究表明,瘦素增加高充气通气反应(HVR),防止瘦素的肥胖通气不足缺乏肥胖症。然而,大多数肥胖者有高血浆瘦素水平,并表现出对激素5,6,7,8的代谢和呼吸作用的阻力。对瘦素的抗药性是多因素的,但血脑屏障(BBB)对瘦素的渗透性有限,是主要原因。我们建议,瘦素作用于BBB以下的周围缺氧敏感性的关键器官,胡萝卜体(CB),以捍卫肥胖者的呼吸。CB表示瘦素受体LepRb的长功能等形,但CB在瘦素呼吸效应中的作用尚未充分阐明9,10。

我们的方法的目的是检查瘦素信号在CB对HVR的影响。我们的基本原理是:(a) 在小鼠体内注入瘦素,并注入完整的胡萝卜体和脱粒胡萝卜体,然后进行HVR测量;(a) 进行功能丧失实验,将瘦素注入小鼠体内;(b) 缺乏 LepRbdb/db小鼠的功能实验增益,其中我们仅在 CB 中测量了在基线和后表达 LepRb的 HVR。我们技术的优点是,我们在睡眠和觉醒期间,在无节制的无麻醉小鼠身上进行了所有实验。以前的研究者要么在麻醉9下进行实验,要么在睡眠10号期间没有测量瘦素的效果。此外,我们的研究是首次利用上述CB中选择性LepRb表达的函数方法的独特增益。

在广义上,我们的方法可以概括到CB中表达的其他受体及其在低氧敏感性中的作用。调查人员可以将配体注入感兴趣的受体,并在基线和CB变性后测量HVR。作为一种补充方法,在CB和HVR测量中,可以使用本手稿中描述的技术在过度表达之前和之后过度表达感兴趣的受体。

Protocol

所有实验协议均已获得机构动物护理和使用委员会(MO18M211)的批准。 1. 瘦素输液 注:为了检查瘦素对呼吸的影响,我们通过渗透泵在瘦C57BL/6J小鼠中注入瘦素,以提高肥胖小鼠的循环瘦素水平。 渗透泵制备 称重空泵以检查已装载溶液的净重量。 将瘦素(5毫克/mL)加入渗透泵(1 μL/h,3天)。用小型注?…

Representative Results

连续输注瘦素显著增加瘦C57BL/6J小鼠的HVR,从0.23升至0.31 mL/min/g/g/-FiO2(P <0.001,图2)11。 CSND废除了HVR的瘦素诱导增加(图2),而瘦素输液后假手术组未观察到CSND对HVR的衰减效应。 LepR b 在LepRb缺乏肥胖db/db小鼠的 CB 中的 LepRb表达导致 HVR 显著增加,从 0.05 mL/min/g/μSpO<sub…

Discussion

我们研究的主要重点是检查瘦素信号在CB中的呼吸效应。已经开发了几种协议来评估瘦素在机械方式中的作用。首先,通过仔细定量HVR在缺氧暴露的前2分钟,分析了CB对HVR的具体贡献。第二,通过两种互补的方法考察了CB在瘦素介导的呼吸控制调节中的相关性。在瘦野生型小鼠中,瘦素水平低,在基线和连续输液后测量HVR;实验在CB变性后重复。在LepRb-缺陷db/db小鼠中,HV…

Disclosures

The authors have nothing to disclose.

Acknowledgements

R01HL138932,RO1HL133100,RO1HL128970,AHACDA34700025

Materials

1ml Insulin Syringes BD Biosciences 309311
1x PBS (pH 7.4) Gibco 10010-023 500 ml
Ad-Lacz Dr. Christopher Rhodes (University of Chicago) 1×1010 pfu/ml
Ad-LepRb-GFP Vector Biolabs ADV-263380 2-5×1010 pfu/ml
Anesthetic cart Atlantic Biomedical
Betadine Purdue Products Ltd. 12496-0757-5
Buprenorphine (Buprenex) Reckitt Benckiser Healthcare Ltd. 12496-0757-5 0.3mg/ml
C57Bl/6J Jackson laboratory 000664 Mice Strain
Cotton Gauze Sponges Fisherbrand 22-362-178
db/db Jackson laboratory 000697 Mice Strain
Ethanol Pharmco-AAPER 111000200
Isoflurane Vetone 502017
Lab Chart Data Science International (DSI) Software
Matrigel Matrix BD Biosciences 356234
Micro Spring Scissors World Precision Instruments (WPI) 14124
Mouse Ox Plus STARR Life Sciences Corp. Software
Mouse Ox Plus Collar Sensor STARR Life Sciences Corp. 015022-2 Medium Collar Clip Special 7”
Mouse Whole Body Plethysmography Chamber Data Science International (DSI) PLY3211
Ohio Care Plus Incubator Ohmeda HCHD000173
Operating Scissors World Precision Instruments (WPI) 501753-G Straight
Osmotic Pump Alzet 1003D 1ul per hour, 3 days
Phenol Sigma-Aldrich P4557
Recombinant Mouse Leptin protein R&D systems 498-OB-05M 5mg
Saline RICCA Chemical 7210-16 0.9% Sodium Chloride
Sterile Surgical Suture DemeTech DT-639-1 Silk, size 6-0
Thermometer Innovative Calibration Solutions (INNOCAL) EW 20250-91

References

  1. O’donnell, C. P., et al. Leptin prevents respiratory depression in obesity. American Journal of Respiratory and Critical Care Medicine. 159, 1477-1484 (1999).
  2. Polotsky, V. Y., et al. Female gender exacerbates respiratory depression in leptin-deficient obesity. American Journal of Respiratory and Critical Care Medicine. 164, 1470-1475 (2001).
  3. Bassi, M., et al. Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflügers Archiv: European Journal of Physiology. 464, 145-153 (2012).
  4. Inyushkina, E. M., Merkulova, N. A., Inyushkin, A. N. Mechanisms of the respiratory activity of leptin at the level of the solitary tract nucleus. Neuroscience and Behavioral Physiology. 40, 707-713 (2010).
  5. Considine, R. V., et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine. 334, 292-295 (1996).
  6. Maffei, M., et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine. 1, 1155-1161 (1995).
  7. Phipps, P. R., Starritt, E., Caterson, I., Grunstein, R. R. Association of serum leptin with hypoventilation in human obesity. Thorax. 57, 75-76 (2002).
  8. Berger, S., Polotsky, V. Y. Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications. Oxidative Medicine and Cellular Longevity. 2018, 5137947 (2018).
  9. Ribeiro, M. J., et al. High fat diet blunts the effects of leptin on ventilation and on carotid body activity. The Journal of Physiology. 96, 3187-3199 (2018).
  10. Yuan, F., et al. Leptin signaling in the carotid body regulates a hypoxic ventilatory response through altering TASK channel expression. Frontiers in Physiology. 9, 249 (2018).
  11. Caballero-Eraso, C., et al. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. The Journal of Physiology. 591, 151-172 (2018).
  12. Jun, J. C., Shin, M. K., Yao, Q., Devera, R., Fonti-Bevans, S., Polotsky, V. Y. Thermoneutrality modifies the impact of hypoxia on lipid metabolism. American Journal of Physiology Endocrinology and Metabolism. 304, 424-435 (2012).
  13. Polotsky, V. Y., et al. Impact of interrupted leptin pathways on ventilatory control. Journal of Applied Physiology. 96, 991-998 (2004).
  14. Pho, H., et al. The effect of leptin replacement on sleep-disordered breathing in the leptin-deficient ob/ob mouse. Journal of Applied Physiology. 120, 78-86 (2016).
  15. Hernandez, A. B., et al. Novel whole body plethysmography system for the continuous characterization of sleep and breathing in a mouse. Journal of Applied Physiology. 112, 671-680 (2012).
  16. Powell, F. L., Milsom, W. K., Mitchell, G. S. Time domains of the hypoxic ventilatory response. Respiration Physiology. 112, 123-134 (1998).
  17. Drorbaugh, J. E., Fenn, W. O. A barometric method for measuring ventilation in newborn infants. Pediatrics. 16, 81-87 (1955).
  18. Duffin, J. Measuring the ventilatory response to hypoxia. The Journal of Physiology. 587, 285-293 (2007).
  19. Teppema, L. J., Dahan, A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiological Reviews. 90, 675-754 (2010).
  20. Nurse, C. A., Fearon, I. M. Carotid body chemoreceptors in dissociated cell culture. Microscopy Research and Technique. 59, 249-255 (2002).
  21. Kumar, P., Prabhakar, N. R. Peripheral chemoreceptors: function and plasticity of the carotid body. Comprehensive Physiology. 2, 141-219 (2012).
  22. Roux, J. C., Peyronnet, J., Pascual, O., Dalmaz, Y., Pequignot, J. M. Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. The Journal of Physiology. 522, 493-501 (2000).

Play Video

Cite This Article
Shin, M., Kim, L. J., Caballero-Eraso, C., Polotsky, V. Y. Experimental Approach to Examine Leptin Signaling in the Carotid Bodies and its Effects on Control of Breathing. J. Vis. Exp. (152), e60298, doi:10.3791/60298 (2019).

View Video