Summary

通过旋转磁盘显微镜在单极式斜接主轴中测量微管动力学

Published: November 15, 2019
doi:

Summary

在这里,我们提出了一个强大而详细的微管动力学分析方法,在预元相中同步的细胞使用活细胞旋转磁盘共聚焦显微镜和基于MATLAB的图像处理。

Abstract

我们描述了对确定活细胞中微管动力学的既定方法的修改。该协议基于微管正端(EB3标有tdTomato荧光蛋白)的遗传编码标记的表达,以及使用旋转盘共聚焦显微镜的高速、高分辨率活细胞成像。通过抑制线细胞中的中位体分离,实现细胞周期同步和微管密度的增加,并使用开源U-Track软件进行生长分析。使用明亮和红色转移荧光蛋白,结合较低的激光功率和减少曝光时间所需的旋转盘显微镜减少光毒性和光诱导伪影的可能性。这允许在相同的制备中成像更多细胞,同时在标准培养条件下将细胞保持在生长培养基中。由于分析以受监督的自动方式执行,因此结果在统计上是可靠的,可重现。

Introduction

微管(MTs)是几乎所有真核细胞和某些细菌1中发现的高度动态结构。与蛋白和中间丝一起,他们雕刻细胞骨架2,3。细胞分裂4,分子传输5,鞭拉击6,感觉周围环境通过原发性硅7,听力(基诺西)8,9,胚胎发生10,11,12,入侵和转移13,14,甚至记忆形成15,16,17,18,和许多其他过程主要依赖于MT。如果没有在生长(聚合)和收缩(去聚合)之间快速切换的非凡能力,那么,在所有这些事件中,如果MT的参与是不可能的。此属性被描述为动态不稳定19。MT动态性在许多病理条件下改变20,21,22。因此,确定此属性的性质可以帮助了解疾病机制及其后的治疗。

已经为MT动力学分析开发了一长串的方法,其中大多数都基于成像技术23。最初,宽场光学显微镜用于观察在体外24体中形成图布林聚合物。最终结合(EB)蛋白的发现,在MT加端聚集,并开发荧光标记蛋白质的方法,使得在宽场和共聚焦荧光显微镜25、26、27的活细胞中直接观察MT的行为成为可能。一个EB蛋白是最终结合蛋白3(EB3)28;通过过度表达和跟踪EB3融合到荧光蛋白,MT加端组装速率可以确定29,30。

共聚焦激光扫描荧光显微镜(CLSM)经常用于跟踪MT动力学。然而,这种成像技术带来了光毒性和光漂白的高风险,两个不良的过程活细胞和暗淡样品成像31。为了获得更好的信噪比,激光功率和曝光持续时间应足够高,同时不损坏样品,这需要牺牲分辨率以换取速度。CLSM的一个合适的替代方案是旋转磁盘显微镜32。这种成像模式基于使用Nipkow磁盘33,它包括一个带有一系列针孔的移动磁盘,并且与许多CLS显微镜同时成像同一样品34的工作相同。因此,来自激光的光将同时照亮样品中的多个区域,但会保持共聚焦性质。因此,Nipkow 磁盘允许获取类似于 CLSM 的图像,但速度更快,使用更少的激光功率。横川电机进一步改进了Nipkow圆盘,该盘引入了第二个圆盘,上面装有一系列微透镜,可单独将光线定向到各自的针孔中,进一步降低了光毒性和光漂白35。因此,旋转盘激光扫描显微镜成为活细胞成像的首选方法,并且它使得以高速31、36获得高信噪比的图像成为可能,这对解析来自快速增长的MT端信号至关重要。

MT 动态暂时不同。例如,线粒体MT比相间的37,38更动态。同样,即使在相同的细胞周期阶段,如米细胞炎39,40,也观察到生长速率和收缩的差异。因此,为了避免错误数据收集,MT 动力学的测量应限制在单元周期中的狭窄时间窗口。例如,通过用二甲基苯丙酮(DME)处理细胞,可以测量预元相中的MT动力学,这是一种抑制运动动蛋白Eg541并防止双极线轴42形成的单体模拟物。用Eg5抑制剂DME和其他单星衍生物抑制细胞在预元相不影响MT动力学43,44,45,这使得DME成为研究固定细胞和活细胞44MT动力学的有用工具。

在这里,我们将Ertych等人44描述的prometa相细胞中的MT动力学分析方法与双旋转磁盘成像相结合。该方法允许测量从单个焦平面收集的Prometa相细胞中的MT动力学,成像速率较高,但无光漂白和最小光毒性。此外,作为荧光报告员,我们使用串联二聚体番茄荧光蛋白(tdTomato),与绿色荧光蛋白(EGFP)相比,具有更高的亮度和光稳定性,并且以低能量光46激发。因此,tdTomato 需要较少的激光功率来激发,并且光毒性更少。总之,通过降低光毒性,提高MT动力学分析所需的分辨率和后处理,进一步完善了该方法。此外,我们通过将方法与其他同步技术相结合,为将来修改该方法奠定基础。

Protocol

1. 赫拉细胞的种子 在磷酸盐缓冲盐水 (PBS) 中制备 2 mL 的 5 μg/mL 纤维化溶液,并将其加入 4 口井盖玻片 (#1.5) 的每个井中。在37°C和5%CO2下孵育幻灯片15分钟。 用Dulbecco的磷酸盐缓冲盐水(DPBS)冲洗异步生长的HeLa细胞,并在37°C下孵育胰蛋白酶-EDTA(0.05%:0.02%;w:v)。5分钟。停止酶反应添加罗斯威尔公园纪念研究所(RPMI)1640介质辅以10%热灭活胎儿小牛血清(FCS)在3:…

Representative Results

按照图1A中概述的给定协议,pEB3-tdTomato质粒在异步生长的HeLa细胞中瞬时表达。通过DME治疗在临元相转染后48小时与细胞同步(图1B)。此步骤可确保 MT 动力学的测量始终在细胞周期的同一阶段进行。延时电影被进一步处理和分析与U-Track v2.2.0,如其补充文件50,51,52所述。虽然加端?…

Discussion

在这里,我们描述了Ertych等人首先建立的方法的修改。除了其他几种修改之外,我们还将这一MT动力学分析技术与双旋转磁盘共聚焦成像相结合。使用双纺盘提高了增长的MT的分辨率,同时降低了光毒性36。通过切换到长波长荧光报告器,我们进一步减少了光漂白和激光引起的细胞损伤。与EGFP46相比,tdTomato荧光蛋白具有更高的光稳定性和亮度?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢马克斯-普朗克实验医学研究所光显微镜设施的成员,感谢他们的专家建议和支持。

Materials

Dimethylenastron Merck 324622
DMEM w/o phenol red Gibco 31053-28
DPBS Gibco 14190-094
Fetal bovine serum Biochrom S0415
Fibronectin Bovine Plasma Merck F4759 Sterile powder
GlutaMAX Gibco 35050-038 Stable glutamine substitutive
jetPRIME Polyplus 114-15
EB3-TdTomato Addgene plasmid #50708
RPMI 1640 Gibco 61870-010
Trypan Blue Merck T8154-20ML
Trypsin/EDTA solution Biochrom L2143 0.05% / o.02 % w/o calcium and magnesium
µ-slide Ibidi 80426 4-well slide with #1.5 coverslip
Eclipse Ti Inverted microscope Nikon NA
Objective Nikon MRD01991 CFI Apo TIRF 100XC Oil
ACAL Laser Excahnger Nikon Laser box. 405, 458, 488, 514, 561 and 647nm
Spinning disk module Andor CSU-W
Camera Andor iXon Ultra 888
Environmental Chamber Okolab Dark chamber equipped with CO2 supply, tmeperature control and humidifier
HeLa Cells DSMZ ACC-57
NIS Elements v4 Nikon Spinning disk microscope. Acquisition Software
MATLAB Mathworks Computing environment
Prism 8 GraphPad Statistical analysis and display software

References

  1. Erickson, H. P. Evolution of the cytoskeleton. Bioessays. 29 (7), 668-677 (2007).
  2. Pollard, T. D., Goldman, R. D. Overview of the Cytoskeleton from an Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology. 10 (7), (2018).
  3. Wade, R. H. On and around microtubules: an overview. Molecular Biotechnology. 43 (2), 177-191 (2009).
  4. Forth, S., Kapoor, T. M. The mechanics of microtubule networks in cell division. Journal of Cell Biology. 216 (6), 1525-1531 (2017).
  5. Franker, M. A., Hoogenraad, C. C. Microtubule-based transport – basic mechanisms, traffic rules and role in neurological pathogenesis. Journal of Cell Science. 126, 2319-2329 (2013).
  6. Lindemann, C. B., Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. Journal of Cell Science. 123, 519-528 (2010).
  7. Wheway, G., Nazlamova, L., Hancock, J. T. Signaling through the Primary Cilium. Frontiers in Cell and Developmental Biology. 6, 8 (2018).
  8. Falk, N., Losl, M., Schroder, N., Giessl, A. Specialized Cilia in Mammalian Sensory Systems. Cells. 4 (3), 500-519 (2015).
  9. Spoon, C., Grant, W. Biomechanical measurement of kinocilium. Methods in Enzymology. 525, 21-43 (2013).
  10. Zenker, J., et al. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science. 357 (6354), 925-928 (2017).
  11. Goldstein, B. Embryonic polarity: a role for microtubules. Current Biology. 10 (22), 820-822 (2000).
  12. Uchida, S., Shumyatsky, G. P. Deceivingly dynamic: Learning-dependent changes in stathmin and microtubules. Neurobiology of Learning and Memory. 124, 52-61 (2015).
  13. Fife, C. M., McCarroll, J. A., Kavallaris, M. Movers and shakers: cell cytoskeleton in cancer metastasis. British Journal of Pharmacology. 171 (24), 5507-5523 (2014).
  14. Bouchet, B. P., Akhmanova, A. Microtubules in 3D cell motility. Journal of Cell Science. 130 (1), 39-50 (2017).
  15. Dent, E. W. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Molecular Biology of the Cell. 28 (1), 1-8 (2017).
  16. Craddock, T. J., Tuszynski, J. A., Hameroff, S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation. PLOS Computational Biology. 8 (3), (2012).
  17. Smythies, J. Off the beaten track: the molecular structure of long-term memory: three novel hypotheses-electrical, chemical and anatomical (allosteric). Frontiers in Integrative Neuroscience. 9, 4 (2015).
  18. Kaganovsky, K., Wang, C. Y. How Do Microtubule Dynamics Relate to the Hallmarks of Learning and Memory. Journal of Neuroscience. 36 (22), 5911-5913 (2016).
  19. Mitchison, T., Kirschner, M. Dynamic instability of microtubule growth. Nature. 312 (5991), 237-242 (1984).
  20. Dubey, J., Ratnakaran, N., Koushika, S. P. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Frontiers in Cellular Neuroscience. 9, 343 (2015).
  21. Parker, A. L., Kavallaris, M., McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Frontiers in Oncology. 4, 153 (2014).
  22. Honore, S., Pasquier, E., Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell and Molecular Life Sciences. 62 (24), 3039-3056 (2005).
  23. Straube, A. . Methods in Molecular Biology. , (2011).
  24. Budde, P. P., Desai, A., Heald, R. Analysis of microtubule polymerization in vitro and during the cell cycle in Xenopus egg extracts. Methods. 38 (1), 29-34 (2006).
  25. Gierke, S., Kumar, P., Wittmann, T. Analysis of microtubule polymerization dynamics in live cells. Methods in Cell Biology. 97, 15-33 (2010).
  26. Matov, A., et al. Analysis of microtubule dynamic instability using a plus-end growth marker. Nature Methods. 7 (9), 761-768 (2010).
  27. Bailey, M., Conway, L., Gramlich, M. W., Hawkins, T. L., Ross, J. L. Modern methods to interrogate microtubule dynamics. Integrative Biology (Camb). 5 (11), 1324-1333 (2013).
  28. Galjart, N. Plus-end-tracking proteins and their interactions at microtubule ends. Current Biology. 20 (12), 528-537 (2010).
  29. Stepanova, T., et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). Journal of Neuroscience. 23 (7), 2655-2664 (2003).
  30. Zwetsloot, A. J., Tut, G., Straube, A. Measuring microtubule dynamics. Essays in Biochemistry. 62 (6), 725-735 (2018).
  31. Bayguinov, P. O., et al. Modern Laser Scanning Confocal Microscopy. Current Protocols in Cytometry. 85 (1), 39 (2018).
  32. Nakano, A. Spinning-disk confocal microscopy — a cutting-edge tool for imaging of membrane traffic. Cell Structure and Function. 27 (5), 349-355 (2002).
  33. Nipkow, P. Elektrisches teleskop. Germany patent. , (1884).
  34. Yin, S., Lu, G., Zhang, J., Yu, F. T., Mait, J. N. Kinoform-based Nipkow disk for a confocal microscope. Applied Optics. 34 (25), 5695-5698 (1995).
  35. Tanaami, T., Kenta, M. Nipkow disk for confocal optical scanner. European patent application. , (1992).
  36. Oreopoulos, J., Berman, R., Browne, M. Spinning-disk confocal microscopy: present technology and future trends. Methods in Cell Biology. 123, 153-175 (2014).
  37. Rusan, N. M., Fagerstrom, C. J., Yvon, A. M., Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Molecular Biology of the Cell. 12 (4), 971-980 (2001).
  38. Rusan, N. M., Fagerstrom, C. J., Yvon, A. -. M. C., Wadsworth, P. Cell Cycle-Dependent Changes in Microtubule Dynamics in Living Cells Expressing Green Fluorescent Protein-α Tubulin. Molecular Biology of the Cell. 12 (4), 971-980 (2001).
  39. Liu, D., Davydenko, O., Lampson, M. A. Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. Journal of Cell Biology. 198 (4), 491-499 (2012).
  40. Maiato, H., Sunkel, C. E. Kinetochore-microtubule interactions during cell division. Chromosome Research. 12 (6), 585-597 (2004).
  41. Muller, C., et al. Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemotherrapy and Pharmacology. 59 (2), 157-164 (2007).
  42. Mayer, T. U., et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 286 (5441), 971-974 (1999).
  43. Kapoor, T. M., Mayer, T. U., Coughlin, M. L., Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin Eg5. The Journal of Cell Biology. 150 (5), 975-988 (2000).
  44. Ertych, N., et al. Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nature Cell Biology. 16 (8), 779-791 (2014).
  45. Brito, D. A., Yang, Z., Rieder, C. L. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. The Journal of Cell Biology. 182 (4), 623-629 (2008).
  46. Shaner, N. C., Patterson, G. H., Davidson, M. W. Advances in fluorescent protein technology. Journal of Cell Science. 120 (24), 4247-4260 (2007).
  47. Phelan, M. C., Lawler, G. Cell Counting. Current Protocols in Cytometry. 00 (1), 3 (1997).
  48. Merriam, E. B., et al. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. Journal of Neuroscience. 33 (42), 16471-16482 (2013).
  49. Samora, C. P., et al. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nature Cell Biology. 13 (9), 1040-1050 (2011).
  50. Applegate, K. T., et al. plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics. Journal of Structural Biology. 176 (2), 168-184 (2011).
  51. Jaqaman, K., et al. Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods. 5 (8), 695-702 (2008).
  52. Stout, A., D’Amico, S., Enzenbacher, T., Ebbert, P., Lowery, L. A. Using plusTipTracker Software to Measure Microtubule Dynamics in Xenopus laevis Growth Cones. Journal of Visualized Experiments. , e52138 (2014).
  53. Linkert, M., et al. Metadata matters: access to image data in the real world. The Journal of Cell Biology. 189 (5), 777-782 (2010).
  54. Brouhard, G. J. Dynamic instability 30 years later: complexities in microtubule growth and catastrophe. Molecular Biology of the Cell. 26 (7), 1207-1210 (2015).
  55. Burbank, K. S., Mitchison, T. J. Microtubule dynamic instability. Current Biology : CB. 16 (14), 516-517 (2006).
  56. Caplow, M., Shanks, J., Ruhlen, R. L. Temperature-jump studies of microtubule dynamic instability. Journal of Biological Chemistry. 263 (21), 10344-10352 (1988).
  57. Prasad, V., Jordan, M. A., Luduena, R. F. Temperature sensitivity of vinblastine-induced tubulin polymerization in the presence of microtubule-associated proteins. Journal of Protein Chemistry. 11 (5), 509-515 (1992).
  58. Wasteneys, G. O. Microtubules Show their Sensitive Nature. Plant and Cell Physiology. 44 (7), 653-654 (2003).
  59. Turi, A., Lu, R. C., Lin, P. -. S. Effect of heat on the microtubule disassembly and its relationship to body temperatures. Biochemical and Biophysical Research Communications. 100 (2), 584-590 (1981).
  60. Safinya, C. R., et al. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure. Advances in Colloid and Interface Science. 232, 9-16 (2016).
  61. Sandoval, I. V., Weber, K. Calcium-Induced Inactivation of Microtubule Formation in Brain Extracts. European Journal of Biochemistry. 92 (2), 463-470 (1978).
  62. Vater, W., Böhm, K. J., Unger, E. Tubulin assembly in the presence of calcium ions and taxol: Microtubule bundling and formation of macrotubule-ring complexes. Cell Motility. 36 (1), 76-83 (1997).
  63. Yamashita, N., et al. Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus. Journal of Biomedical Optics. 20 (10), 1-18 (2015).
  64. Pamula, M. C., et al. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. Journal of Cell Biology. 218 (8), 2529-2544 (2019).

Play Video

Cite This Article
Movsisyan, N., Pardo, L. A. Measurement of Microtubule Dynamics by Spinning Disk Microscopy in Monopolar Mitotic Spindles. J. Vis. Exp. (153), e60478, doi:10.3791/60478 (2019).

View Video