Summary

定量荧光显微镜为基础的单脂体测定,用于检测单个脂质体之间的成分不均匀性

Published: December 13, 2019
doi:

Summary

该协议描述了脂体的制造,以及如何用荧光显微镜将这些脂体固定在表面上,并单独以大规模平行的方式成像。这允许定量种群单脂质体之间的大小和组成不均匀性。

Abstract

大多数使用脂体作为膜模型系统或药物输送载体的研究都依赖于批量读出技术,因此在本质上假定整体的所有脂体都是相同的。然而,能够在单粒子水平上观察脂质体的新实验平台使得对单个脂质体的蛋白质膜相互作用或药物载体特性进行高度精密的定量研究成为可能,从而避免从集合平均错误。在这里,我们提出了一个协议,用于准备,检测和分析单脂体使用荧光为基础的显微镜测定,促进这种单粒子测量。该设置允许以大规模并行方式成像单个脂质体,并用于揭示样品内大小和成分不均匀性。此外,该协议还描述了在单脂体水平上研究脂体的优点、测定的局限性以及修改其以研究其他研究问题时需要考虑的重要特征。

Introduction

脂质体是以球面磷脂为基础的囊泡,在基础和应用研究中被大量使用。它们作为优秀的膜模型系统,因为它们的物理化学性质可以很容易地通过改变组成脂质体1,2的脂质成分来操纵。此外,脂体构成最常用的药物输送纳米载体系统,提供改进的药代动力学和药效学以及高生物相容性3。

多年来,脂体主要使用散装技术进行研究,仅允许访问整体平均读出值。这导致大多数这些研究假设,在集合中的所有脂体是相同的。但是,仅当基础数据集在平均值周围均匀分布时,此类集合平均值才正确,但如果数据集包含多个独立总体,则可以表示错误和偏置的结论。此外,假设表示整个人群的合奏意味着可以忽视脂质体之间不均匀性中蕴藏的信息。直到最近才出现能够探测单脂质体的定量测定,揭示了单个脂质体之间相对于重要的物理化学特性(包括脂质体大小4、脂质组合物5、6和封装效率7)之间的大不均匀性,突出了在单脂质体水平上研究脂质体的重要性。

一个研究领域,其中脂质体特性的一组平均已被证明有偏差的结果是研究脂质体大小依赖蛋白膜相互作用8,9。传统上,研究此类过程的研究人员仅限于通过不同孔径的过滤器,以制备不同集合平均直径的脂质体然而,使用单脂体测定提取单个脂体直径后发现,脂体种群重叠较大,使用100nm和200nm滤波器拉伸的脂体在其大小分布4中显示高达70%的重叠。这可能严重偏置脂体大小依赖蛋白膜相互作用的批量测量10。研究人员使用单脂体测定法进行膜蛋白相互作用研究,而是利用样品中的大小-多分散性,允许他们在每个实验中研究广泛的脂质体直径,从而促进新发现膜曲率和组成如何影响膜4、11、12的蛋白质招募。单脂体测定的应用证明有用的另一个领域是蛋白质介导膜融合的力学研究13,14。对于这种动力学测量,研究单个融合事件的能力减轻了对融合过程的实验同步的需要,使得新的机械洞察力,否则在散装集合测量中完成的时空平均中会丢失。此外,单脂体已被用作膜支架,允许测量单个蛋白质,并提供跨膜蛋白结构动力学的新知识15,16。此外,这种基于蛋白酶体的设置使得研究单个跨膜输送机17和孔隙形成蛋白复合物18的功能以及生物活性膜渗透肽19的机理成为可能。单脂质体也被用作软物质纳米流体,表面固定单脂质体作为10-19 L体积的酶反应室,以最小的产品消耗20增加筛选测定的通量和复杂性。

最近,单脂体测定已用于在以前未预先拟定的细节水平上对药物输送脂量体进行特征化。研究人员能够量化附着在单个脂质体表面的聚合物数量中显著的不均匀性单脂体测定还允许在复杂的介质(如血浆)中测量药物输送脂质体,揭示当脂质体暴露于模仿体内循环过程中经历的条件,通过脂质锚锚锚定位到脂质体表面的元素如何容易分离。总体而言,单脂体测定的多功能性和实用性得到了这些装置用于解决的各种问题的证实,我们设想,该方法将继续开发,并在新的科学领域得到应用。

在这里,我们描述了一种基于荧光显微镜的单脂体测定,它允许以高通量方式研究单个脂体(图1)。为了说明该方法,我们用它来量化集合中单个脂质体之间的大小和组成不均匀性。该测定采用荧光显微镜成像单脂质体固定在钝化玻璃表面。我们首先描述了脂体制造过程中的关键步骤,以确保适当的荧光脂体标记和固定。然后,在概述确保适当脂体表面密度的程序之前,我们描述了促进脂体固定所需的表面制备。我们讨论了对获取高质量图像非常重要的显微镜参数,并描述如何执行简单的数据分析,允许提取脂质体大小和成分不均匀性。此通用协议应为感兴趣的研究人员为进一步开发其特定研究兴趣的测定提供良好基础。

Protocol

1. 脂体制备 注:简要地说,脂质体制备通常包括三个关键步骤:1)制备所需脂质成分的干脂膜;2) 脂质的补液形成脂质体;3) 控制脂质体种群的大小和粒度。 称量脂质并将其溶解在玻璃瓶中的三丁醇:水(9:1)。 溶解POPC(1-棕榈-2-醇-甘油-3-磷胆碱);MW = 760 g/mol) 至 50 mM。 将胆固醇 (MW = 387 g/mol) 溶解到 25 mM。 溶解 DOPE-Atto488 (1,2-二氧化?…

Representative Results

遵循所述协议,可以大规模并行方式对单个脂体进行成像(图1)。在将脂体溶液添加到腔室(协议步骤 3.6)时,脂体的成功表面固定应立即显现出来,因为衍射有限强度点应出现在图像中(图 1B和图 1C)。 为了实现良好的统计和利?…

Discussion

需要注意的是,虽然我们详细描述了如何使用单脂体测定来研究单个脂质体之间的组成不均匀性,但该平台非常通用。如前面所示和介绍中讨论,该协议可以很容易地适应研究膜膜融合、蛋白膜相互作用或脂质体药物载体表征的各个方面。对于任何正在解决的科学问题,单脂质测定的力量在于能够检测合奏的各个成分,从而具有定量读出,而不是通过集合平均效应进行偏颇。

<p class="jove_content"…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由丹麦独立研究理事会资助[赠款号5054-00165B]。

Materials

8-well microscopy slides (µ slides) Ibidi 80827 Microscopy slides with glass bottom
Avanti Mini Extrusion kit Avanti Polar Lipids 610000 Consumables (Whatman filters) can be aquired from GE Healthcare
BSA Sigma A9418
BSA-Biotin Sigma A8549
Cholesterol Avanti Polar Lipids 700000 Traded trough Sigma
Computer with FIJI (Fiji Is Just ImageJ) ComDet plugin must be installed. Also, a data handling software (Excel, MatLab, OpenOffice, GraphPad Prism etc.) able to load .txt files will be needed to plot the data
DOPE-Atto488 Atto-Tech AD488-165
DOPE-Atto655 Atto-Tech AD655-165
DOPE-PEG-Biotin Avanti Polar Lipids 880129 Traded trough Sigma
D-Sorbitol Sigma S-6021
Freeze-dryer e.g. ScanVac Coolsafe from Labogene
Glass vials Brown Chromatography 150903 Glass vials that can resist snap-freezing in liquid nitrogen. The 8 mL version of the vials has a size that also fits with the syringes of the extrusion kit
HCl Honeywell Fluka 258148
Heating bath Capable of heating to minimum 65C
Heating plate w. Magnet stirring Capable of heating to minimum 65C
HEPES Sigma H3375
Liquid nitrogen Including container for storage, e.g. Rubber-bath
Magnetic stirring bars VWR 442-4520 (EU)
Microcentrifuge tubes 1.5 mL Eppendorf 0030 120.086 (EU)
Microscope For the images in this protocol a Leica SP5 confocal microscope has been used
Na HEPES Sigma H7006
NaCl Sigma S9888
NaOH Honeywell Fluka 71686
POPC Avanti Polar Lipids 850457 Traded trough Sigma
Streptavidin Sigma S4762
tert-Butanol (2-methyl-2-propanol) Honeywell Riedel-de Haën 24127
Ultrapure water e.g. MilliQ

References

  1. Chan, Y. H. M., Boxer, S. G. Model membrane systems and their applications. Current Opinion in Chemical Biology. 11 (6), 581-587 (2007).
  2. Veatch, S. L., Keller, S. L. Seeing spots: Complex phase behavior in simple membranes. Biochimica Et Biophysica Acta-Molecular Cell Research. 1746 (3), 172-185 (2005).
  3. Sercombe, L., et al. Advances and Challenges of Liposome Assisted Drug Delivery. Frontiers in Pharmacology. 6, 13 (2015).
  4. Hatzakis, N. S., et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nature Chemical Biology. 5 (11), 835-841 (2009).
  5. Elizondo, E., et al. Influence of the Preparation Route on the Supramolecular Organization of Lipids in a Vesicular System. Journal of the American Chemical Society. 134 (4), 1918-1921 (2012).
  6. Larsen, J., Hatzakis, N. S., Stamou, D. Observation of Inhomogeneity in the Lipid Composition of Individual Nanoscale Liposomes. Journal of the American Chemical Society. 133 (28), 10685-10687 (2011).
  7. Lohse, B., Bolinger, P. Y., Stamou, D. Encapsulation Efficiency Measured on Single Small Unilamellar Vesicles. Journal of the American Chemical Society. 130 (44), 14372 (2008).
  8. Iversen, L., Mathiasen, S., Larsen, J. B., Stamou, D. Membrane curvature bends the laws of physics and chemistry. Nature Chemical Biology. 11 (11), 822-825 (2015).
  9. Bhatia, V. K., Hatzakis, N. S., Stamou, D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Seminars in Cell & Developmental Biology. 21 (4), 381-390 (2010).
  10. Bhatia, V. K., et al. Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO Journal. 28 (21), 3303-3314 (2009).
  11. Larsen, J. B., et al. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology. 11 (3), 192 (2015).
  12. Larsen, J. B., et al. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment. Biophysical Journal. 113 (6), 1269-1279 (2017).
  13. Yoon, T. Y., Okumus, B., Zhang, F., Shin, Y. K., Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 103 (52), 19731-19736 (2006).
  14. Fix, M., et al. Imaging single membrane fusion events mediated by SNARE proteins. Proceedings of the National Academy of Sciences of the United States of America. 101 (19), 7311-7316 (2004).
  15. Hatzakis, N. S., et al. Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are “Selected” upon Allosteric Regulation. Journal of the American Chemical Society. 134 (22), 9296-9302 (2012).
  16. Mathiasen, S., et al. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nature Methods. 11 (9), 931-934 (2014).
  17. Veshaguri, S., et al. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science. 351 (6280), 1469-1473 (2016).
  18. Tonnesen, A., Christensen, S. M., Tkach, V., Stamou, D. Geometrical Membrane Curvature as an Allosteric Regulator of Membrane Protein Structure and Function. Biophysical Journal. 106 (1), 201-209 (2014).
  19. Kristensen, K., Ehrlich, N., Henriksen, J. R., Andresen, T. L. Single-Vesicle Detection and Analysis of Peptide-Induced Membrane Permeabilization. Langmuir. 31 (8), 2472-2483 (2015).
  20. Christensen, S. M., Bolinger, P. Y., Hatzakis, N. S., Mortensen, M. W., Stamou, D. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotechnology. 7 (1), 51-55 (2012).
  21. Eliasen, R., Andresen, T. L., Larsen, J. B. PEG-Lipid Post Insertion into Drug Delivery Liposomes Quantified at the Single Liposome Level. Advanced Materials Interfaces. 6 (9), 1801807 (2019).
  22. Münter, R., et al. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. Nanoscale. 10 (48), 22720-22724 (2018).
  23. Traikia, M., Warschawski, D. E., Recouvreur, M., Cartaud, J., Devaux, P. F. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscope and P-31-nuclear magnetic resonance. European Biophysics Journal with Biophysics Letters. 29 (3), 184-195 (2000).
  24. Nele, V., et al. Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. Langmuir. 35 (18), 6064-6074 (2019).
  25. Kunding, A. H., Mortensen, M. W., Christensen, S. M., Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: Application to the extrusion of lipid vesicles. Biophysical Journal. 95 (3), 1176-1188 (2008).
  26. Hughes, L. D., Rawle, R. J., Boxer, S. G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLoS One. 9 (2), e87649 (2014).
check_url/kr/60538?article_type=t

Play Video

Cite This Article
Münter, R., Andresen, T. L., Larsen, J. B. A Quantitative Fluorescence Microscopy-based Single Liposome Assay for Detecting the Compositional Inhomogeneity Between Individual Liposomes. J. Vis. Exp. (154), e60538, doi:10.3791/60538 (2019).

View Video