Summary

从成人人类脑组织获取人类微胶质

Published: August 30, 2020
doi:

Summary

该协议是一种高效、经济、稳健的方法,将原发性微胶质与活的、成人的、人类脑组织隔离在一起。分离的原人类微胶质可以作为研究平衡和疾病细胞过程的工具。

Abstract

微胶质是中枢神经系统(CNS)的生俱来的免疫细胞。微胶质在开发、维持平衡以及感染或损伤期间发挥着关键作用。几个独立的研究小组强调了微胶质在自身免疫性疾病、自身炎综合症和癌症中的核心作用。微胶质在一些神经系统疾病中的激活可能直接参与致病过程。原发性微胶质是了解大脑中免疫反应、细胞-细胞相互作用和疾病中调节不良的微胶质表型的有力工具。原发微胶质比不朽的微胶质细胞系更好地模仿体内微胶质特性。与人类胎儿和啮齿动物微胶质相比,人类成年微胶质表现出不同的特性。该协议为从成人人脑分离原发性微胶质提供了一种有效的方法。研究这些微胶质可以提供关键见解,在中枢机核素的微胶质细胞和其他居民细胞群体之间的细胞-细胞相互作用,包括,寡头细胞,神经元和星细胞。此外,来自不同人类大脑的微胶质可以培养,用于个性化医学和无数治疗应用的独特免疫反应的特征。

Introduction

中枢神经系统(CNS)由神经元和胶质细胞1的复杂网络组成。在胶质细胞中,微胶质作为CNS2,3的先天免疫细胞。微胶质负责维持健康CNS4中的平衡。微胶质在神经发育中也扮演着重要的角色,通过修剪突触2。微胶质是几种神经系统疾病病理生理学的核心,包括但不限于;阿尔茨海默病5,帕金森病6,中风7,多发性硬化症8,创伤性脑损伤9,神经病变疼痛10,脊髓损伤11和脑肿瘤如胶质瘤12。

与中枢系统平衡和疾病相关的研究利用啮齿动物微胶质,由于缺乏成本效益和时间效率的人类原发性微胶质分离协议13。在伊巴-1、PU.1、DAP12和M-CSF受体等基因的表达中,罗登特微胶质与原人类微胶质相似,在理解正常和患病的大脑13方面是有效的。有趣的是,几个免疫相关基因,如TLR4,MHC II,西格尔克-11和西格尔克-3的表达在人类和啮齿动物微胶质13之间不同。几个基因的表达在时间表达和神经退行性疾病中也各不相同,在这两个物种14,15。14,这些显著差异使人类微胶质成为研究平衡和疾病中微胶质功能的重要模型。原发性人类微胶质也可以是一个有效的工具,用于临床前筛选潜在的药物候选者16。上述原因突出表明,越来越需要对分离原人类微胶质的具有成本效益的协议。

我们开发了一种从成人人类脑组织中分离原发性人类微胶质的方案,该机制是为肿瘤切除或其他手术切除而创建的手术窗口。此处的方法与现有方法大不相同。我们能够在从组织采集场开始分离协议后,在从组织采集场大约75分钟的传输时间分离和培养微胶质。我们利用L929成纤维细胞的上一体来促进分离微胶质的生长。该方法特别侧重于仅初级微胶质的培养和发展。由此产生的培养是大约80%的微胶质。虽然其他协议通过密度梯度离心、流式细胞学和磁珠提供丰富的微胶质文化,但该协议是培养,初级人类微胶质,17、18、19、20的快速、17,18简单、健壮且具有成本效益的方法19能够利用手术切除活的成人脑组织,而不是固定脑组织从尸体证明这种方法的附加优势,相比之下,现有的程序18,21。18,21

Protocol

所有组织都是在印度理工学院乔德普尔和全印度医学研究所(AIIMS)乔德普尔的伦理委员会进行伦理批准后获得的。 1.组织采集和加工(第 0 天) 收集含有 10 mL 冰冷人工脑脊液 (aCSF) 的 50 mL 管中的组织 (2 mM CaCl2+2H2O, 10 mM 葡萄糖, 3 mM KCl, 26 mM NaHCO3,2.5 mM NaH2PO4,1 mM MgCl2+ 6H2O, 202 mM 蔗糖)20…

Representative Results

通过使用上述协议(图1),我们能够将原人类微胶质从活的手术切除的脑组织中分离。培养细胞被染色的利西努斯共融质蛋白-1(RCA-1)乳胶微胶质(绿色)和胶质纤维酸蛋白(GFAP)为星形细胞(红色)(图2),如前面描述的22,23,24,25,26。,23,24<…

Discussion

Microglia确保正常大脑中的平衡,并在各种神经系统疾病的病理生理学中发挥核心作用。微胶质是神经发育和突触2形成的核心。微胶质研究已证明对了解各种神经系统疾病的发展和发展至关重要啮齿动物微胶质是初级微胶质研究的首选模式,尽管在关键方面,啮齿动物微胶质与原人类微胶质不同。开发具有成本效益、高产、…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SJ的实验室由国际工业技术委员会提供机构赠款,由生物技术部(BT/PR12831/MED/30/1489/2015)和印度电子和信息技术部(第4号(16)/2019-ITEA)提供资助。人体脑组织部分是在机构伦理委员会批准后从全印度医学研究所(AIIMS)Jodhpur获得的。我们感谢设计与艺术协会 IIT Jodhpur 的 B.Tech 学生成员 Mayank Rathor 提供摄像支持。

Materials

Antibiotic-Antimycotic solution Himedia A002
Calcium chloride Sigma 223506
Centrifuge (4 °C) Sigma 146532
Centrifuge tubes Abdos P10203
CO2 incubator New Brunswik Galaxy 170 S
D-Glucose Himedia GRM077
DMEM medium with glutamine Himedia AL007S
Fetal bovine serum Himedia RM9955
Flacon tube (50 ml) Thermo Fsiher Scientific  50CD1058
Fluorescein Ricinus communis agglutinin-1 Vector FL-1081
Fluorescent microscope Leica DM2000LED
Fluoroshield with DAPI Sigma F6057
GFAP antibody GA5 3670S
Incubator shaker New Brunswik Scientific Innova 42
L929 cell line ATCC NCTC clone 929 [L cell, L-929, derivative of Strain L] (ATCC CCL-1)
Laminar air flow Thermo Fsiher Scientific  1386
Magnesium chloride Himedia MB040
Monosodium phosphate Merck 567545
Nutrient Mixture F-12 Ham Medium Himedia Al106S
Petri dish Duran Group 237554805
Phosphate buffered saline Himedia ML023
Potassium chloride Himedia MB043
Serological pipette Labware LW-SP1010
Sodium bicarbonate Himedia MB045
Sucrose Himedia MB025
Syringe filter (0.2μ, 25 mm diameter) Axiva SFPV25R
T-25 tissue culture flasks suitable for adherent cell culture. Himedia TCG4-20X10NO
Trypsin-EDTA (0.25%) Gibco  25200-056

References

  1. Allen, N. J., Barres, B. A. Glia – more than just brain glue. Nature. 457 (7230), 675-677 (2009).
  2. Lenz, K. M., Nelson, L. H. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Frontiers in Immunology. 9 (698), (2018).
  3. Gordon, S., Plüddemann, A., Martinez Estrada, F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunological Reviews. 262 (1), 36-55 (2014).
  4. Li, Q., Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology. 18 (4), 225-242 (2018).
  5. Hansen, D. V., Hanson, J. E., Sheng, M. Microglia in Alzheimer’s disease: A microglial conundrum. Journal of Cell Biology. 217 (2), 459-472 (2017).
  6. Tremblay, M. -. E., Cookson, M. R., Civiero, L. Glial phagocytic clearance in Parkinson’s disease. Molecular Neurodegeneration. 14 (1), 16 (2019).
  7. Qin, C., et al. Dual Functions of Microglia in Ischemic Stroke. Neuroscience Bulletin. 35 (5), 921-933 (2019).
  8. Voet, S., Prinz, M., van Loo, G. Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine. 25 (2), 112-123 (2019).
  9. Loane, D. J., Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Experimental Neurology. 275 (03), 316-327 (2016).
  10. Inoue, K., Tsuda, M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nature Reviews Neuroscience. 19 (3), 138-152 (2018).
  11. Bellver-Landete, V., et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications. 10 (1), 518 (2019).
  12. Gutmann, D. H., Kettenmann, H. Microglia/Brain Macrophages as Central Drivers of Brain Tumor Pathobiology. Neuron. 104 (3), 442-449 (2019).
  13. Smith, A. M., Dragunow, M. The human side of microglia. Trends in Neurosciences. 37 (3), 125-135 (2014).
  14. Galatro, T. F., et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nature Neuroscience. 20 (8), 1162-1171 (2017).
  15. Friedman, B. A., et al. Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse Models. Cell Reports. 22 (3), 832-847 (2018).
  16. Rustenhoven, J., et al. PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia. Molecular Neurodegeneration. 13 (1), 44 (2018).
  17. Sierra, A., Gottfried-Blackmore, A. C., McEwen, B. S., Bulloch, K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 55 (4), 412-424 (2007).
  18. Mizee, M. R., et al. Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathologica Communications. 5 (1), 16 (2017).
  19. Rustenhoven, J., et al. Isolation of highly enriched primary human microglia for functional studies. Scientific Reports. 6 (1), 19371 (2016).
  20. Spaethling, J. M., et al. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Reports. 18 (3), 791-803 (2017).
  21. Olah, M., et al. An optimized protocol for the acute isolation of human microglia from autopsy brain samples. Glia. 60 (1), 96-111 (2012).
  22. Jha, S., et al. The Inflammasome Sensor, NLRP3, Regulates CNS Inflammation and Demyelination via Caspase-1 and Interleukin-18. The Journal of Neuroscience. 30 (47), 15811 (2010).
  23. Freeman, L., et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. Journal of Experimental Medicine. 214 (5), 1351-1370 (2017).
  24. Plant, S. R., et al. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. The Journal of Neuroscience. 27 (28), 7429-7437 (2007).
  25. Arnett, H. A., et al. The Protective Role of Nitric Oxide in a Neurotoxicant- Induced Demyelinating Model. The Journal of Immunology. 168 (1), 427 (2002).
  26. Arnett, H. A., et al. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nature Neuroscience. 4 (11), 1116-1122 (2001).
  27. Trouplin, V., et al. Bone marrow-derived macrophage production. Journal of Visualized Experiments. (81), e50966 (2013).
  28. Boltz-Nitulescu, G., et al. Differentiation of Rat Bone Marrow Cells Into Macrophages Under the Influence of Mouse L929 Cell Supernatant. Journal of Leukocyte Biology. 41 (1), 83-91 (1987).
  29. Englen, M. D., Valdez, Y. E., Lehnert, N. M., Lehnert, B. E. Granulocyte/macrophage colony-stimulating factor is expressed and secreted in cultures of murine L929 cells. Journal of Immunological Methods. 184 (2), 281-283 (1995).
check_url/kr/61438?article_type=t

Play Video

Cite This Article
Agrawal, I., Saxena, S., Nair, P., Jha, D., Jha, S. Obtaining Human Microglia from Adult Human Brain Tissue. J. Vis. Exp. (162), e61438, doi:10.3791/61438 (2020).

View Video