Summary

糖精中遗传链接调控时间寿命的抑制 器屏幕

Published: September 17, 2020
doi:

Summary

这里是一个协议,通过增加的拷贝数抑制器屏幕在 糖精中识别遗传相互作用。这种方法允许研究人员识别、克隆和测试短寿命酵母突变体中的抑制器。我们测试S SIR2拷贝数 增加对自 噬空突变体寿命的影响。

Abstract

衰老是生物体正常生物过程的由时间依赖性恶化,增加了死亡的概率。许多遗传因素导致正常老化过程的改变。这些因素以复杂的方式相交,许多生物体中发现并保存的大量有据可查的联系就证明了这一点。这些研究大多数集中在功能丧失,空突变体,允许快速筛选许多基因同时。有少得多的工作,专注于描述在这个过程中,基因过度表达的作用。在目前的工作中,我们提出了一种直接的方法,用于识别和克隆萌 酵母中的基因,用于抑制许多遗传背景中见的短期寿命表型的研究。该协议旨在为来自各种背景和不同学术阶段的研究人员提供访问。 SIR2 基因编码为组蛋白去乙酰酶,在pRS315载体中被选为克隆基因,因为关于它对时间寿命的影响有相互矛盾的报道。 SIR2 在自噬中也起着一定的作用,当通过删除多个基因(包括转录因子 ATG1)来破坏时,这种作用会中断。作为原理证明,我们克隆 SROR2基因, 对自噬缺陷 atg1+ 突变体的缩短寿命表型特征进行抑制器筛查,并将其与异源野生型遗传背景进行比较。

Introduction

衰老是无数生物过程中依赖时间的完整性丧失,最终增加了机体死亡的概率。衰老对于所有物种来说几乎是不可避免的。在细胞水平上,有几个与衰老相关的特征特征,包括:基因组不稳定、表观遗传改变、蛋白质组功能丧失、线粒体功能障碍、去调节的营养感应、细胞衰老和端粒减员1,,2。1在单细胞生物,如酵母,这导致复制潜力和时间寿命的寿命,3,4的减少。这些细胞变化表现在更复杂的生物体,如人类,包括癌症,心力衰竭,神经退化,糖尿病和骨质疏松症5,6,76,的病理学5尽管衰老过程有许多复杂性,但在这一过程的不同生物体8、9、10之间9,这些分子特征是保存的。识别这些通路在老化期间的变化导致意识到,他们可以通过生活方式的改变操纵 – 饮食限制显示,大大延长了许多生物体11的寿命。这些路径以复杂的方式相互融合和相交,并相互相交。这些相互作用的阐明和表征为延长寿命和健康跨度12、13、14,13的治疗干预提供了潜力

通过使用更简单的模型生物体(包括萌芽酵母、糖精糖15、16),等,保护衰老的分子基础,可以对过程背后的遗传相互作用进行功能解剖。有两种既定的老化类型,以萌芽酵母为模型:按时间顺序测量(按时间顺序排列的寿命,CLS)和复制老化(复制寿命,RLS)17。按时间顺序排列的老化度量是细胞在非分裂状态下生存的时间量。这类似于在G0中度过大部分生命的细胞中的衰老,如神经元4。或者,复制寿命是单元格在耗尽前可以划分的次数,并且是线状活性细胞类型(例如,单元格可以具有的子细胞数)的模型 18

这种方法的总体目标是提出一个协议,允许使用 S.cerevisiae对衰老的遗传学进行功能解剖。虽然许多研究人员进行了许多优秀的研究,这些研究导致了我们目前的理解,但初露头角的研究人员在学术生涯的早期就为老龄化领域做出了贡献。我们提出了一个明确的方法,使研究人员能够进一步推进老龄化领域。该协议旨在通过提供制定和测试自己新颖假设的必要工具,为所有研究人员提供访问,无论其学术生涯的阶段如何。我们的方法的优点是,这是一种具有成本效益的方法,无论机构如何,所有研究人员都很容易获得这种方法,而且不需要某些协议19所需的昂贵、专门的设备。有几种不同的方法来设计这种类型的屏幕,在这项工作中概述的方法是特别适合筛选非基本基因的空突变体,显示时间寿命严重缩短相比,同源野生型酵母菌株。

作为我们的原则证明,我们克隆了SR2,一种被报告为在过度表达时同时表现出扩展和缩短的CLS的奈氨酸二乙酰酶。SIR2过度表达最近被发现增加了酿酒酵母中的CLS;然而,几个团体报告说,SIR2和CLS扩展之间没有联系,其作用在20,21,22,21,的特征下。由于文献中的这些相互矛盾的报告,我们选择这个基因来添加独立的研究,以帮助澄清SR2在时间老化中的作用,如果有任何。此外,增加SER2同源的拷贝数延长了线虫模型系统23的寿命

自噬是一种细胞内降解系统,向叶酸体24提供细胞细胞因子,如蛋白质和细胞器。自噬通过它的作用,在降解受损的蛋白质和细胞器,以保持细胞平衡25,与长寿紧密相连。自噬的诱导取决于协调许多基因的表达,而 ATG1基因的删除导致萌芽酵母26中的异常短的CLS。ATG1代码为蛋白质丝氨酸/链氨酸激酶,在自噬和细胞质到囊肿(真菌体体等效物)路径27,28中,囊泡形成是必需的。在这里,我们提出增加复制数字屏幕的方法,测试增加的 SIR2拷贝对野生类型和atg1-null 背景的 CLS效果。这种方法特别适用于主要为本科院校的初级研究人员和研究小组,其中许多为在科学领域代表性不足、资源有限的社区服务。

Protocol

1. 确定用于筛查的潜在遗传相互作用 确定表征的遗传背景,利用糖精基因组Saccharomyces数据库(SGD,https://www.yeastgenome.org29,30),,为这个Saccharomyces cerevisiae生物体汇编已知的表型信息,在糖精中产生异常短的时间寿命(CLS)。30 从 网页 顶部的选项中选择”功能”选项卡。 选择 表型, 然后选择…

Representative Results

由于有关SR2在衰老过程中作用的报告相互矛盾,我们选择此基因作为atg1+突变体缩短CLS表型26的潜在抑制剂进行研究。SIR2的作用是有点争议,与相互矛盾的报告,它的作用,扩大CLS,但它已经清楚地链接到增加CLS在至少一个酵母背景,在自噬和食细胞22,31,32,4122,31,32,<sup class="xre…

Discussion

揭开衰老的遗传学是一个困难的挑战,有许多进一步研究的机会,有可能产生对存在的复杂相互作用的重要见解。有许多方法,允许迅速生成功能丧失突变体的研究酵母45,46的空菌株。这种方法提供了一种直接的方法,用于识别和克隆基因到pRS315载体上,用于过度表达抑制器的研究。这种方法的一个优点是,这允许从稳定的载体适度过度表达,这可以?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

James T. Arnone 感谢 2017 年和 2018 年威廉 ·帕特森大学重组 DNA 技术课程中学生的支持,他们自立时参与该项目,但其努力没有跨过作者的门槛:克里斯托弗·安蒂诺、胡安·博特罗、约瑟芬·博赞、布伦达·卡拉帕、布伦达·古巴斯、海特洛夫·埃塞尔·达齐、伊尔文·加马拉、珍贵的吉夫特·伊西博尔, 韦恩 · 科、纳尔逊 · 梅佳、赫克托 · 莫托拉、拉比亚 · 纳兹、阿卜杜拉 · 奥德、 珍珠 · 帕贡塔兰、丹尼尔 · 拉扎埃、加布里埃拉 · 校长、艾达 · 肖诺和马修 · 索。你们是伟大的科学家,我想念你们!

作者感谢威廉·帕特森大学教学和研究技术公司给予他们帮助的宝贵支持:格雷格·马蒂森、彼得·卡纳罗齐、罗布·迈耶、但丁·波泰拉和亨利·海尼特什。作者还要感谢艺术学支助教务长办公室、院长办公室和科学与健康学院研究中心对这项工作的支持,以及生物学系对该项目的支持。

Materials

Fungal/Bacterial DNA kit Zymo Research D6005
HindIIIHF enzyme New England Biolabs R3104S
Phusion High-Fidelity DNA Polymerase New England Biolabs M0530S
Plasmid miniprep kit Qiagen 12123
SacII enzyme New England Biolabs R0157S
Salmon sperm DNA Thermofisher AM9680
T4 DNA ligase New England Biolabs M0202S

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. The hallmarks of aging. Cell. 153 (6), 1194-1217 (2013).
  2. Kenyon, C. The genetics of ageing. Nature. 464 (7288), 504-512 (2010).
  3. Petralia, R. S., Mattson, M. P., Yao, P. J. Aging and longevity in the simplest animals and the quest for immortality. Ageing Research Reviews. 16, 66-82 (2014).
  4. Longo, V. D., Fabrizio, P. . Aging Research in Yeast. , 101-121 (2011).
  5. Campisi, J. Aging, cellular senescence, and cancer. Annual Review of Physiology. 75, 685-705 (2013).
  6. Galkin, F., Zhang, B., Dmitriev, S. E., Gladyshev, V. N. Reversibility of irreversible aging. Ageing Research Reviews. 49, 104-114 (2019).
  7. Khan, S. S., Singer, B. D., Vaughan, D. E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 16 (4), 624-633 (2017).
  8. Riera, C. E., Merkwirth, C., De Magalhaes Filho, C. D., Dillin, A. Signaling networks determining life span. Annual Review of Biochemistry. 85, 35-64 (2016).
  9. Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes & Development. 20 (2), 174-184 (2006).
  10. Lapierre, L. R., Hansen, M. Lessons from C. elegans: signaling pathways for longevity. Trends in Endocrinology & Metabolism. 23 (12), 637-644 (2012).
  11. Fontana, L., Partridge, L., Longo, V. D. Extending healthy life span-from yeast to humans. Science. 328 (5976), 321-326 (2010).
  12. Houtkooper, R. H., Pirinen, E., Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology. 13 (4), 225-238 (2012).
  13. Bitto, A., et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. elife. 5, 16351 (2016).
  14. Fang, E. F., et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metabolism. 24 (4), 566-581 (2016).
  15. Kaeberlein, M., Kennedy, B. K. Large-scale identification in yeast of conserved ageing genes. Mechanisms of Ageing and Development. 126 (1), 17-21 (2005).
  16. Fabrizio, P., et al. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genetics. 6 (7), (2010).
  17. Longo, V. D., Shadel, G. S., Kaeberlein, M., Kennedy, B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metabolism. 16 (1), 18-31 (2012).
  18. He, C., Zhou, C., Kennedy, B. K. The yeast replicative aging model. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1864 (9), 2690-2696 (2018).
  19. Lee, S. S., Vizcarra, I. A., Huberts, D. H., Lee, L. P., Heinemann, M. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proceedings of the National Academy of Sciences. 109 (13), 4916-4920 (2012).
  20. Fabrizio, P., Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2 (2), 73-81 (2003).
  21. Smith, J., Daniel, L., McClure, J. M., Matecic, M., Smith, J. S. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell. 6 (5), 649-662 (2007).
  22. Orozco, H., Matallana, E., Aranda, A. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking. Microbial Cell Factories. 12 (1), 1 (2013).
  23. Tissenbaum, H. A., Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 410 (6825), 227-230 (2001).
  24. Huang, W. P., Klionsky, D. J. Autophagy in yeast: a review of the molecular machinery. Cell Structure and Function. 27 (6), 409-420 (2002).
  25. Barbosa, M. C., Grosso, R. A., Fader, C. M. Hallmarks of aging: an autophagic perspective. Frontiers in Endocrinology. 9, 790 (2019).
  26. Aris, J. P., et al. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Experimental Gerontology. 48 (10), 1107-1119 (2013).
  27. Cheong, H., Nair, U., Geng, J., Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Molecular Biology of the Cell. 19 (2), 668-681 (2008).
  28. Matsuura, A., Tsukada, M., Wada, Y., Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene. 192 (2), 245-250 (1997).
  29. Cherry, J. M., et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Research. 40, 700-705 (2012).
  30. Engel, S. R., et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3: Genes, Genomes, Genetics. 4 (3), 389-398 (2014).
  31. Imai, S. I., Armstrong, C. M., Kaeberlein, M., Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403 (6771), 795-800 (2000).
  32. Sampaio-Marques, B., et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy. 8 (10), 1494-1509 (2012).
  33. Nagalakshmi, U., et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 320 (5881), 1344-1349 (2008).
  34. De Boer, C. G., Hughes, T. R. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Research. 40, 169-179 (2012).
  35. Sanders, E. R. Aseptic laboratory techniques: plating methods. Journal of Visualized Experiments. (63), e3064 (2012).
  36. Gietz, R. D., Woods, R. A. . Methods in Enzymology. 350, 87-96 (2002).
  37. Salvi, S., et al. Serum and plasma copy number detection using real-time PCR. Journal of Visualized Experiments. (130), e56502 (2017).
  38. McIsaac, R. S., et al. Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae. Journal of Visualized Experiments. (76), e50382 (2013).
  39. Mirisola, M. G., Braun, R. J., Petranovic, D. Approaches to study yeast cell aging and death. FEMS Yeast Research. 14 (1), 109-118 (2014).
  40. Ricardo, R., Phelan, K. Counting and determining the viability of cultured cells. Journal of Visualized Experiments. (16), e752 (2008).
  41. Lin, S. J., Guarente, L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Current Opinion in Cell Biology. 15 (2), 241-246 (2003).
  42. Sikorski, R. S., Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. 유전학. 122 (1), 19-27 (1989).
  43. Romanos, M. A., Scorer, C. A., Clare, J. J. Foreign gene expression in yeast: a review. Yeast. 8 (6), 423-488 (1992).
  44. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 29 (9), 45 (2001).
  45. Storici, F., Resnick, M. A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods in Enzymology. 409, 329-345 (2006).
  46. DiCarlo, J. E., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research. 41 (7), 4336-4343 (2013).
  47. Arnone, J. T. Genomic Considerations for the Modification of Saccharomyces cerevisiae for Biofuel and Metabolite Biosynthesis. Microorganisms. 8 (3), (2020).
  48. Murakami, C., Kaeberlein, M. Quantifying yeast chronological life span by outgrowth of aged cells. Journal of Visualized Experiments. (27), e1156 (2009).
  49. Steffen, K. K., Kennedy, B. K., Kaeberlein, M. Measuring replicative life span in the budding yeast. Journal of Visualized Experiments. (28), e1209 (2009).
  50. Huberts, D. H., Janssens, G. E., Lee, S. S., Vizcarra, I. A., Heinemann, M. Continuous high-resolution microscopic observation of replicative aging in budding yeast. Journal of Visualized Experiments. (78), e50143 (2013).

Play Video

Cite This Article
Dix, C., Sgro, S., Patel, A., Perrotta, C., Eldabagh, N., Lomauro, K. L., Miguez, F. W., Chohan, P., Jariwala, C., Arnone, J. T. A Suppressor Screen for the Characterization of Genetic Links Regulating Chronological Lifespan in Saccharomyces cerevisiae. J. Vis. Exp. (163), e61506, doi:10.3791/61506 (2020).

View Video