Summary

Una Tubería Bioinformática Para La Investigación De La Evolución Molecular Y La Expresión Génica Usando RNA-seq

Published: May 28, 2021
doi:

Summary

El propósito de este protocolo es investigar la evolución y expresión de genes candidatos utilizando datos de secuenciación de ARN.

Abstract

Destilar y reportar grandes conjuntos de datos, como datos de genoma completo o transcriptoma, es a menudo una tarea desalentadora. Una forma de desglosar los resultados es centrarse en una o más familias de genes que son importantes para el organismo y el estudio. En este protocolo, se describen los pasos bioinformáticos para generar una filogenia y cuantificar la expresión de genes de interés. Los árboles filogenéticos pueden dar una idea de cómo los genes están evolucionando dentro y entre las especies, así como revelar la ortología. Estos resultados se pueden mejorar utilizando datos de ARN-seq para comparar la expresión de estos genes en diferentes individuos o tejidos. Los estudios de evolución molecular y expresión pueden revelar modos de evolución y conservación de la función génica entre especies. La caracterización de una familia de genes puede servir como trampolín para futuros estudios y puede destacar una familia de genes importante en un nuevo genoma o transcriptoma.

Introduction

Los avances en las tecnologías de secuenciación han facilitado la secuenciación de genomas y transcriptomas de organismos no modelo. Además de la mayor viabilidad de secuenciar adn y ARN de muchos organismos, una gran cantidad de datos está disponible públicamente para estudiar genes de interés. El propósito de este protocolo es proporcionar pasos bioinformáticos para investigar la evolución molecular y la expresión de genes que pueden desempeñar un papel importante en el organismo de interés.

Investigar la evolución de un gen o familia de genes puede proporcionar información sobre la evolución de los sistemas biológicos. Los miembros de una familia de genes se determinan típicamente mediante la identificación de motivos conservados o secuencias de genes homólogos. La evolución de la familia génica se investigó previamente utilizando genomas de organismos modelo distantemente relacionados1. Una limitación a este enfoque es que no está claro cómo evolucionan estas familias de genes en especies estrechamente relacionadas y el papel de las diferentes presiones selectivas ambientales. En este protocolo, incluimos una búsqueda de homólogos en especies estrechamente relacionadas. Al generar una filogenia a nivel de filo, podemos observar tendencias en la evolución de la familia de genes como la de genes conservados o duplicaciones específicas de linaje. En este nivel, también podemos investigar si los genes son ortólogos o parálogos. Si bien es probable que muchos homólogos funcionen de manera similar entre sí, ese no es necesariamente el caso2. La incorporación de árboles filogenéticos en estos estudios es importante para determinar si estos genes homólogos son ortólogos o no. En los eucariotas, muchos ortólogos conservan funciones similares dentro de la célula, como lo demuestra la capacidad de las proteínas de mamíferos para restaurar la función de los ortólogos de levadura3. Sin embargo, hay casos en los que un gen no ortólogo realiza una función caracterizada4.

Los árboles filogenéticos comienzan a delinear las relaciones entre los genes y las especies, sin embargo, la función no se puede asignar únicamente en función de las relaciones genéticas. Los estudios de expresión génica combinados con anotaciones funcionales y análisis de enriquecimiento proporcionan un fuerte apoyo para la función génica. Los casos en los que la expresión génica se puede cuantificar y comparar entre individuos o tipos de tejidos pueden ser más reveladores de la función potencial. El siguiente protocolo sigue los métodos utilizados en la investigación de los genes de opsina en Hydra vulgaris7,pero se pueden aplicar a cualquier especie y cualquier familia de genes. Los resultados de tales estudios proporcionan una base para la investigación adicional en la función del gen y las redes del gene en organismos no-modelo. A modo de ejemplo, la investigación de la filogenia de las opsinas, que son proteínas que inician la cascada de fototransducción, da contexto a la evolución de los ojos y la detección de la luz8,9,10,11. En este caso, los organismos no modelo, especialmente las especies animales basales como los cnidarios o los ctenophores, pueden dilucidar la conservación o los cambios en la cascada de fototransducción y la visión a través de los clados12,13,14. Del mismo modo, la determinación de la filogenia, expresión y redes de otras familias de genes nos informará sobre los mecanismos moleculares subyacentes a las adaptaciones.

Protocol

Este protocolo sigue las pautas de cuidado de animales de UC Irvine. 1. Preparación de la biblioteca de ARN-seq Aísle el ARN usando los métodos siguientes. Recoger muestras. Si el ARN se va a extraer en un momento posterior, congele la muestra o colótese en la solución de almacenamiento de ARN15 (Tabla de Materiales). Eutanasiar y diseccionar el organismo para separar tejidos de interés. Extraer el ARN total…

Representative Results

Los métodos anteriores se resumen en la Figura 1 y se aplicaron a un conjunto de datos de tejidos de Hydra vulgaris. H. vulgaris es un invertebrado de agua dulce que pertenece al filo Cnidaria que también incluye corales, medusas y anémonas de mar. H. vulgaris puede reproducirse asexualmente por gemación y pueden regenerar su cabeza y pie cuando están divididos en dos. En este estudio, el objetivo fue investigar la evolución y expresión de los genes…

Discussion

El propósito de este protocolo es proporcionar un contorno de los pasos para caracterizar a una familia del gene usando datos del ARN-seq. Se ha demostrado que estos métodos funcionan para una variedad de especies y conjuntos de datos4,34,35. La tubería establecida aquí se ha simplificado y debería ser lo suficientemente fácil como para ser seguida por un novato en bioinformática. La importancia del protocolo es que descr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Agradecemos a Adriana Briscoe, Gil Smith, Rabi Murad y Aline G. Rangel por su asesoramiento y orientación para incorporar algunos de estos pasos en nuestro flujo de trabajo. También estamos agradecidos a Katherine Williams, Elisabeth Rebboah y Natasha Picciani por los comentarios sobre el manuscrito. Este trabajo fue apoyado en parte por una beca de investigación médica de la Fundación George E. Hewitt para A.M.M.

Materials

Bioanalyzer-DNA kit Agilent 5067-4626 wet lab materials
Bioanalyzer-RNA kit Agilent 5067-1513 wet lab materials
BLAST+ v. 2.8.1 On computer cluster*
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
Blast2GO (on your PC) On local computer
https://www.blast2go.com/b2g-register-basic
boost v. 1.57.0 On computer cluster
Bowtie v. 1.0.0 On computer cluster
https://sourceforge.net/projects/bowtie-bio/files/bowtie/1.3.0/
Computing cluster (highly recommended) NOTE: Analyses of genomic data are best done on a high-performance computing cluster because files are very large.
Cufflinks v. 2.2.1 On computer cluster
edgeR v. 3.26.8 (in R) In Rstudio
https://bioconductor.org/packages/release/bioc/html/edgeR.html
gcc v. 6.4.0 On computer cluster
Java v. 11.0.2 On computer cluster
MEGA7 (on your PC) On local computer
https://www.megasoftware.net
MEGAX v. 0.1 On local computer
https://www.megasoftware.net
NucleoSpin RNA II kit Macherey-Nagel 740955.5 wet lab materials
perl 5.30.3 On computer cluster
python On computer cluster
Qubit 2.0 Fluorometer ThermoFisher Q32866 wet lab materials
R v.4.0.0 On computer cluster
https://cran.r-project.org/src/base/R-4/
RNAlater ThermoFisher AM7021 wet lab materials
RNeasy kit Qiagen 74104 wet lab materials
RSEM v. 1.3.0 Computer software
https://deweylab.github.io/RSEM/
RStudio v. 1.2.1335 On local computer
https://rstudio.com/products/rstudio/download/#download
Samtools v. 1.3 Computer software
SRA Toolkit v. 2.8.1 On computer cluster
https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit
STAR v. 2.6.0c On computer cluster
https://github.com/alexdobin/STAR
StringTie v. 1.3.4d On computer cluster
https://ccb.jhu.edu/software/stringtie/
Transdecoder v. 5.5.0 On computer cluster
https://github.com/TransDecoder/TransDecoder/releases
Trimmomatic v. 0.35 On computer cluster
http://www.usadellab.org/cms/?page=trimmomatic
Trinity v.2.8.5 On computer cluster
https://github.com/trinityrnaseq/trinityrnaseq/releases
TRIzol ThermoFisher 15596018 wet lab materials
TruSeq RNA Library Prep Kit v2 Illumina RS-122-2001 wet lab materials
TURBO DNA-free Kit ThermoFisher AM1907 wet lab materials
*Downloads and installation on the computer cluster may require root access. Contact your network administrator.

References

  1. Lespinet, O., Wolf, Y. I., Koonin, E. V., Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Research. 12 (7), 1048-1059 (2002).
  2. Gabaldón, T., Koonin, E. V. Functional and evolutionary implications of gene orthology. Nature Reviews Genetics. 14 (5), 360-366 (2013).
  3. Dolinski, K., Botstein, D. Orthology and Functional Conservation in Eukaryotes. Annual Review of Genetics. 41 (1), (2007).
  4. Macias-Muñoz, A., McCulloch, K. J., Briscoe, A. D. Copy number variation and expression analysis reveals a non-orthologous pinta gene family member involved in butterfly vision. Genome Biology and Evolution. 9 (12), 3398-3412 (2017).
  5. Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC plant biology. 4, 10 (2004).
  6. Eastman, S. D., Chen, T. H. P., Falk, M. M., Mendelson, T. C., Iovine, M. K. Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics. 87 (2), 265-274 (2006).
  7. Macias-Munõz, A., Murad, R., Mortazavi, A. Molecular evolution and expression of opsin genes in Hydra vulgaris. BMC Genomics. 20 (1), 1-19 (2019).
  8. Hisatomi, O., Tokunaga, F. Molecular evolution of proteins involved in vertebrate phototransduction. Comparative Biochemistry and Physiology – B Biochemistry and Molecular Biology. 133 (4), 509-522 (2002).
  9. Arendt, D. Evolution of eyes and photoreceptor cell types. International Journal of Developmental Biology. 47, 563-571 (2003).
  10. Shichida, Y., Matsuyama, T. Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1531), 2881-2895 (2009).
  11. Porter, M. L., et al. Shedding new light on opsin evolution. Proceedings of the Royal Society B: Biological Sciences. 279 (1726), 3-14 (2012).
  12. Plachetzki, D. C., Degnan, B. M., Oakley, T. H. The origins of novel protein interactions during animal opsin evolution. PLoS ONE. 2 (10), 1054 (2007).
  13. Ramirez, M. D., et al. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biology and Evolution. 8 (12), 3640-3652 (2016).
  14. Schnitzler, C. E., et al. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biology. 10, 107 (2012).
  15. Pedersen, K. B., Williams, A., Watt, J., Ronis, M. J. Improved method for isolating high-quality RNA from mouse bone with RNAlater at room temperature. Bone Reports. 11, 100211 (2019).
  16. Ridgeway, J. A., Timm, A. E., Fallon, A. Comparison of RNA isolation methods from insect larvae. Journal of Insect Science. 14 (1), 4-8 (2014).
  17. Scholes, A. N., Lewis, J. A. Comparison of RNA isolation methods on RNA-Seq: Implications for differential expression and meta-Analyses. BMC Genomics. 21 (1), 1-9 (2020).
  18. Briscoe, A. D., et al. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS genetics. 9 (7), 1003620 (2013).
  19. Murad, R., Macias-Muñoz, A., Wong, A., Ma, X., Mortazavi, A. Integrative analysis of Hydra head regeneration reveals activation of distal enhancer-like elements. bioRxiv. , 544049 (2019).
  20. Gallego Romero, I., Pai, A. A., Tung, J., Gilad, Y. Impact of RNA degradation on measurements of gene expression. BMC Biology. 12, 42 (2014).
  21. Bolger, A. M., Lohse, M., Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30 (15), 2114-2120 (2014).
  22. Trinity. . RNA-Seq De novo Assembly Using Trinity. , 1-7 (2014).
  23. Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21 (2013).
  24. Li, B., Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 12, 323 (2011).
  25. Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology. 10, 25 (2009).
  26. Camacho, C., et al. BLAST+: architecture and applications. BMC Bioinformatics. 10, 421 (2009).
  27. Conesa, A., Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics. 619832, (2008).
  28. Conesa, A., et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21 (18), 3674-3676 (2005).
  29. Götz, S., et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research. 36 (10), 3420-3435 (2008).
  30. Kumar, S., Stecher, G., Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution. 33 (7), 1870-1874 (2016).
  31. Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32 (5), 1792-1797 (2004).
  32. Taddei-Ferretti, C., Musio, C., Santillo, S., Cotugno, A. The photobiology of Hydra’s periodic activity. Hydrobiologia. 530, 129-134 (2004).
  33. Chapman, J. A., et al. The dynamic genome of Hydra. Nature. 464 (7288), 592-596 (2010).
  34. Macias-Muñoz, A., Rangel Olguin, A. G., Briscoe, A. D. Evolution of phototransduction genes in Lepidoptera. Genome Biology and Evolution. 11 (8), 2107-2124 (2019).
  35. Macias-Munõz, A., Murad, R., Mortazavi, A. Molecular evolution and expression of opsin genes in Hydra vulgaris. BMC Genomics. 20 (1), (2019).
  36. Picelli, S., et al. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols. 9 (1), 171-181 (2014).
  37. Tavares, L., Alves, P. M., Ferreira, R. B., Santos, C. N. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC research notes. 4, 3 (2011).
  38. Johnson, M. T. J., et al. Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLoS ONE. 7 (11), (2012).
  39. Zhao, S., Zhang, Y., Gamini, R., Zhang, B., Von Schack, D. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: PolyA+ selection versus rRNA depletion. Scientific Reports. 8 (1), 1-12 (2018).
  40. Zhao, S., et al. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics. 16 (1), 1-14 (2015).
  41. Corley, S. M., MacKenzie, K. L., Beverdam, A., Roddam, L. F., Wilkins, M. R. Differentially expressed genes from RNA-Seq and functional enrichment results are affected by the choice of single-end versus paired-end reads and stranded versus non-stranded protocols. BMC Genomics. 18 (1), 1-13 (2017).
  42. Haas, B. J., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols. 8 (8), 1494-1512 (2013).
  43. Pertea, M., et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology. 33 (3), 290-295 (2015).
  44. Bray, N. L., Pimentel, H., Melsted, P., Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 34 (5), 525-527 (2016).
  45. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods. 14 (4), 417-419 (2017).
  46. Araujo, F. A., Barh, D., Silva, A., Guimarães, L., Thiago, R. . OPEN GO FEAT a rapid web-based functional annotation tool for genomic and transcriptomic data. , 8-11 (2018).
  47. Huerta-Cepas, J., et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution. 34 (8), 2115-2122 (2017).
  48. Huerta-Cepas, J., et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research. 47, 309-314 (2019).
  49. Törönen, P., Medlar, A., Holm, L. PANNZER2: A rapid functional annotation web server. Nucleic Acids Research. 46, 84-88 (2018).
  50. Robinson, M., Mccarthy, D., Chen, Y., Smyth, G. K. . edgeR differential expression analysis of digital gene expression data User’s Guide. , (2013).
  51. Huang, D. W., Sherman, B. T., Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 4 (1), 44-57 (2009).
  52. Huang, D. W., Sherman, B. T., Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research. 37 (1), 1-13 (2009).
  53. Letunic, I., Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic acids research. 44, 242-245 (2016).

Play Video

Cite This Article
Macias-Muñoz, A., Mortazavi, A. A Bioinformatics Pipeline for Investigating Molecular Evolution and Gene Expression using RNA-seq. J. Vis. Exp. (171), e61633, doi:10.3791/61633 (2021).

View Video