Summary

Detergent-Free Decellularization of the Human Pancreas for Soluble Extracellular Matrix (ECM) Production

Published: September 04, 2020
doi:

Summary

The protocol described in this manuscript explains the steps for the fabrication of a soluble extracellular matrix (ECM) from the human pancreas. The solubilized ECM powder obtained through this protocol may be used for the recapitulation of pancreatic islets’ microenvironment in vitro and, potentially, in vivo settings.

Abstract

Islet transplantation (ITx) has the potential to become the standard of care in beta cell replacement medicine but its results remain inferior to those obtained with whole pancreas transplantation. The protocols currently used for human islet isolation are under scrutiny because they are based on the enzymatic digestion of the organ, whereby the pancreas is demolished, its connections to the body are lost and islets are irreversibly damaged. Islet damage is characterized by critical factors such as the destruction of the extracellular matrix (ECM), which represents the 3D framework of the islet niche and whose loss is incompatible with islet euphysiology. Researchers are proposing the use of ECM-based scaffolds derived from the mammalian pancreas to address this problem and ultimately improve islet viability, function, and lifespan. Currently available methods to obtain such scaffolds are harsh because they are largely detergent based. Thus, we propose a new, detergent-free method that creates less ECM damage and can preserve critical components of pancreatic ECM. The results show that the newly developed decellularization protocol allowed the achievement of complete DNA clearance while the ECM components were retained. The ECM obtained was tested for cytotoxicity and encapsulated with human pancreatic islets which showed a positive cellular behavior with insulin secretion when stimulated with glucose challenge. Collectively, we propose a new method for the decellularization of the human pancreas without the use of conventional ionic and non-ionic chemical detergents. This protocol and the ECM obtained with it could be of use for both in vitro and in vivo applications.

Introduction

The isolation of pancreatic islets is a meticulous process carried out through the enzymatic digestion of the connections between islets and their extracellular surrounding supportive structure. This destruction of the extracellular matrix (ECM) is one of the critical factors in characterizing islets' damage taking place during isolation processes1,2,3,4. The peri-islet ECM is an essential acellular component of the endocrine pancreas. It is composed of proteins and polysaccharides, which interact and cross-link to form a three-dimensional net that structurally and biochemically supports the physiological homeostasis, and helps in the recreation of this in vitro microenvironment2,5,6. The loss of fundamental signaling processes between islets and ECM is recognized as one of the contributing factors, which limits islets' survival in vitro and in vivo2,7,8,9,10.

Animal- and human-derived ECM have been widely used for the recapitulation of the pancreatic islets' microenvironment11,12,13,14,15,16,17,18,19. Since the ability of the ECM to enhance rat islet cells attachment, proliferation, and long-term culture maintenance was first reported in ref.20, many other studies have provided strong evidence that the restoration of native ECM interaction with human islets enhances islet function21,22. For instance, recent data has shown that islets encapsulated with ECM significantly improved glycemic control in diabetic mice, enhancing and facilitating the delivery of insulin in a novel cell-based insulin delivery platform23. Furthermore, studies have demonstrated that incorporation of critical components of pancreatic ECM can significantly improve the endocrine function of β-cells24,25,26,27.

ECM manufacturing protocols present in the literature are based on the application of chemical detergents, e.g., Triton X-100 or sodium dodecyl sulfate (SDS). Despite providing excellent DNA clearance, chemicals used in decellularization processes are cytotoxic, expensive, and residues on the decellularized tissue bring concerns in view of potential clinical application.

Based on these observations, the objectives of this study were three-fold: First, to develop a decellularization method for the human pancreas with minimal use of ionic or non-ionic chemical detergents; Second, to produce a soluble ECM scaffold for tissue culture; Third, to characterize the pancreatic ECM in order to assess its cytotoxicity and impact on islet cell function. The characterization is necessary for all the cell-culture-based applications, as it demonstrates that solubilized pancreatic ECM could be beneficial in recapitulating the pancreatic microenvironment for isolated islets. Described herein is an effective, detergent-free decellularization method for the human pancreas, characterization of the ECM, and the effect of ECM on viability and function of encapsulated isolated human pancreatic islets.

Protocol

This research study was approved by the human research committee of Wake Forest Baptist Medical Center. Human pancreases were ethically obtained from organ donors through Carolina Donor Services. Organ donors were screened for infectious diseases relevant to humans, according to UNOS regulations. Organs were received in sterile preservation solution where they were kept until use. Upon delivery to the lab, all organs were inspected, and samples of the native pancreas were collected for histological purposes. The organs w…

Representative Results

Native and acellular pancreatic samples were processed for histological staining with H&E, MT, and AB. The H&E staining showed complete absence of nuclear material and cells, confirming successful decellularization. MT and AB stainings showed the framework of the ECM, highlighting qualitatively collagenous and stromal components, respectively (Figure 1). This method enabled the consistent generation of an ECM powder from the human pancreas. DNA quantificat…

Discussion

The aim of this work was to develop a gentler, detergent-free decellularization protocol to produce pancreatic ECM. Attention was paid to the preservation of ECM components of the pancreatic parenchyma and the avoidance of a lengthy tissue exposure to conventional ionic or non-ionic chemical detergents during the decellularization process.

The most innovative aspect of the developed decellularization method is the avoidance of classic ionic and non-ionic chemical detergents. Our previous exper…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 646272. Human Pancreatic Islets were obtained from Prodo Laboratories, Aliso Viejo, CA 92656.

Materials

Corning 1L Easy Grip Polystyrene Storage Bottles with 45mm Caps ThermoFisher 430518 Container use for decellularization
Cryogenic Mill SPEX Certiprep 6870-230
Deoxyribonuclease I from bovine pancreas Sigma Aldrich DN25
Distilled Water ThermoFisher 15230147
Falcon 50mL Conical Centrifuge Tubes Corning 352070
Human Pancreas na na
Insulin-Elisa Mercodia 10-1113-01
Magnesium Chloride, 1M, Sterile Bio-World 41320004-1
Pepsin from porcine gastric mucosa Sigma Aldrich P7012-5G
Placenta Basin w/o Lid, Sterile DeRoyal 32-881
Polypre chromatography tubes Bio-rad 731-1500 Polypropylene columns
Quant-iT PicoGreen dsDNA Assay Kit Invitrogen P7589 DNA Kit
SamplePrep Large-Capacity Freezer/Mill Accessory SPEX 6801 Large Grinding Vial Set
Sephadex G-10 beads Cytiva 17001001 Gel Filtration Resin
Surgical kit na na
UltraPur 0.5M EDTA, pH 8.0 ThermoFisher 15575020
UltraPur 1 M Tris-HCI Buffer, pH 7.5 ThermoFisher 15567027
UltraPure DNase/RNase-Free Distilled Water ThermoFisher 10977023

References

  1. Korpos, E., et al. The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes. 62 (2), 531-542 (2013).
  2. Daoud, J., Petropavlovskaia, M., Rosenberg, L., Tabrizian, M. The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials. 31 (7), 1676-1682 (2010).
  3. Rosenberg, L., Wang, R., Paraskevas, S., Maysinger, D. Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery. 126 (2), 393-398 (1999).
  4. Paraskevas, S., Maysinger, D., Wang, R., Duguid, T. P., Rosenberg, L. Cell loss in isolated human islets occurs by apoptosis. Pancreas. 20 (3), 270-276 (2000).
  5. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science. 326 (5957), 1216-1219 (2009).
  6. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. J Cell Sci. 123 (24), 4195-4200 (2010).
  7. Kuehn, C., Vermette, P., Fulop, T. Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article. Pathologie Biologie (Paris). 62 (2), 67-78 (2014).
  8. Irving-Rodgers, H. F., et al. Pancreatic islet basement membrane loss and remodeling after mouse islet isolation and transplantation: impact for allograft rejection. Cell Transplant. 23 (1), 59-72 (2014).
  9. Tomei, A. A., et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proceedings of the National Academy Science U. S. A. 111 (29), 10514-10519 (2014).
  10. Miao, G., et al. Basement membrane extract preserves islet viability and activity in vitro by up-regulating alpha3 integrin and its signal. Pancreas. 42 (6), 971-976 (2013).
  11. Peloso, A., et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Annals of Surgery. 264 (1), 169-179 (2016).
  12. Salvatori, M., et al. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges. Journal of Diabetes Science and Technology. 8 (1), 159-169 (2014).
  13. Mirmalek-Sani, S. H., et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 34 (22), 5488-5495 (2013).
  14. Chaimov, D., et al. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. Journal of Control Release. 257, 91-101 (2017).
  15. Sackett, S. D., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Science Reports. 8 (1), 10452 (2018).
  16. Jiang, K., et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials. 198, 37-48 (2019).
  17. Citro, A., et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials. 199, 40-51 (2019).
  18. Hashemi, J., et al. Application of a novel bioreactor for in vivo engineering of pancreas tissue. Journal of Cell Physiology. 233 (5), 3805-3816 (2018).
  19. Guruswamy Damodaran, R., Vermette, P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. Journal of Tissue Engineering and Regeneration Medicine. 12 (5), 1230-1237 (2018).
  20. Thivolet, C. H., Chatelain, P., Nicoloso, H., Durand, A., Bertrand, J. Morphological and functional effects of extracellular matrix on pancreatic islet cell cultures. Experimental Cell Research. 159 (2), 313-322 (1985).
  21. Llacua, L. A., Faas, M. M., de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia. 61 (6), 1261-1272 (2018).
  22. Orlando, G., et al. Cell replacement strategies aimed at reconstitution of the beta-cell compartment in type 1 diabetes. Diabetes. 63 (5), 1433-1444 (2014).
  23. Chaimov, D., et al. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. Journal of Control Release. 257, 91-101 (2016).
  24. Hadavi, E., et al. Microwell Scaffolds Using Collagen-IV and Laminin-111 Lead to Improved Insulin Secretion of Human Islets. Tissue Engineering Part C Methods. 25 (2), 71-81 (2019).
  25. Crisostomo, J., et al. ECM-enriched alginate hydrogels for bioartificial pancreas: an ideal niche to improve insulin secretion and diabetic glucose profile. Journal of Applied Biomaterial and Functional Mater. 17 (4), 2280800019848923 (2019).
  26. Davis, N. E., et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials. 33 (28), 6691-6697 (2012).
  27. Carlo, D. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: In vitro and in vivo studies. International Journal of Molecular Medicine. 25 (2), (2009).
  28. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  29. Orlando, G., et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials. 34 (24), 5915-5925 (2013).
  30. Afara, I. O., Prasadam, I., Arabshahi, Z., Xiao, Y., Oloyede, A. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy. Science Reports. 7 (1), 11463 (2017).
  31. Tendulkar, S., et al. A scalable microfluidic device for the mass production of microencapsulated islets. Transplantation Protocol. 43 (9), 3184-3187 (2011).
  32. Fraker, C. A. The Role of Oxygen During In Vitro Culture and Immunoisolation of Islets of Langerhans. University of Miami. , (2011).
  33. Keane, T. J., Londono, R., Turner, N. J., Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 33 (6), 1771-1781 (2012).
  34. Edgar, L., et al. Utility of extracellular matrix powders in tissue engineering. Organogenesis. , 1-15 (2018).
  35. Katari, R., et al. . Current Developments in Biotechnology and Bioengineering. , 325-347 (2017).
  36. Peloso, A., Katari, R., Tamburrini, R., Duisit, J., Orlando, G. Glycosaminoglycans as a measure of outcome of cell-on-scaffold seeding (decellularization) technology. Expert Reviews on Medical Devices. 13 (12), 1067-1068 (2016).
  37. Pineda Molina, C., Lee, Y. C., Badylak, S. F. . Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. , 527-536 (2020).
  38. Thomas, F. T., et al. Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery. 126 (2), 299-304 (1999).
  39. Kenmochi, T., et al. Improved quality and yield of islets isolated from human pancreata using a two-step digestion method. Pancreas. 20 (2), 184-190 (2000).
  40. Lamb, M., et al. In vitro maturation of viable islets from partially digested young pig pancreas. Cell Transplant. 23 (3), 263-272 (2014).
  41. Stendahl, J. C., Kaufman, D. B., Stupp, S. I. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18 (1), 1-12 (2009).
  42. de Vos, P., et al. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing beta-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence. PLoS One. 11 (1), 0147992 (2016).
  43. Smink, A. M., de Vos, P. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation. Current Diabetes Report. 18 (7), 39 (2018).
  44. Orlando, G., Soker, S., Stratta, R. J. Organ bioengineering and regeneration as the new Holy Grail for organ transplantation. Annals of Surgery. 258 (2), 221-232 (2013).
  45. Orlando, G., et al. Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation. 103 (2), 237-249 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Tamburrini, R., Chaimov, D., Asthana, A., Gazia, C., Enck, K., Muir, S. M., Aziz, J. M., Lablanche, S., Tubbs, E., Tomei, A. A., Van Dyke, M., Soker, S., Opara, E. C., Orlando, G. Detergent-Free Decellularization of the Human Pancreas for Soluble Extracellular Matrix (ECM) Production. J. Vis. Exp. (163), e61663, doi:10.3791/61663 (2020).

View Video