Summary

High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry

Published: August 18, 2020
doi:

Summary

Presented here is an optimized high-throughput protocol developed with 16-plex tandem mass tag reagents, enabling quantitative proteome profiling of biological samples. Extensive basic pH fractionation and high-resolution LC-MS/MS mitigate ratio compression and provide deep proteome coverage.

Abstract

Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.

Introduction

Rapid developments in mass spectrometry technology have enabled to achieve high sensitivity and deep proteome coverage in proteomics applications1,2. Despite these developments, sample multiplexing remains the bottleneck for researchers handling the analysis of a large sample cohort.

Multiplexed isobaric labeling techniques are extensively used for proteome-wide relative quantitation of large batches of samples3,4,5,6. Tandem mass tags (TMT)-based quantitation is a popular choice for its high multiplexing capability7,8. TMT reagents were initially launched as a 6-plex kit capable of quantifying up to 6 samples simultaneously9. This technology was further expanded to quantify 10-11 samples10,11. Recently developed 16-plex TMTpro (termed TMT16 hereafter) reagents have further increased the multiplexing capacity to 16 samples in a single experiment12,13. The TMT16 reagents use a proline-based reporter group, whereas 11-plex TMT applies a dimethylpiperidine-derived reporter group. Both TMT11 and TMT16 use the same amine reactive group, but the mass balance group of TMT16 is larger than that of TMT11, enabling the combination of 8 stable C13 and N15 isotopes in the reporter ions to achieve 16 reporters (Figure 1).

The increase in multiplexing capability provides a platform for designing experiments with sufficient replicates to overcome statistical challenges14. Furthermore, the additional channels in the 16-plex TMT help reduce the total amount of starting material per channel, which may aid in the development of emerging single-cell proteomics15. The high multiplexing capacity will also be valuable in quantitation of post-translational modifications, which typically requires high amounts of starting material16,17.

Proteomic workflows employing TMT technology have been streamlined18,19,20, and they have evolved significantly over the past decade in terms of sample preparation, liquid chromatography separation, mass spectrometric data acquisition, and computational analysis21,22,23,24,25,26. Our previous article provides an in-depth overview of the 10-plex TMT platform27. The protocol described here introduces a detailed, optimized method for TMT16, including protein extraction and digestion, TMT16 labeling, sample pooling and desalting, basic pH, and acidic pH reverse phase (RP) LC, high-resolution MS, and data processing (Figure 2). The protocol also highlights the key quality control steps that have been incorporated for successfully completing a quantitative proteomics experiment. This protocol can be routinely used to identify and quantify greater than 10,000 proteins with high reproducibility, to study biological pathways, cellular processes, and disease progression20,28,29,30.

Protocol

Human tissues for the study were obtained with approvals from the Brain and Body Donation Program at Banner Sun Health Research Institute. 1. Protein extraction from tissue and quality control NOTE: To reduce the impact of sample harvesting on the proteome, it is crucial to collect samples in minimal time at low temperature if possible31. This is especially important when analyzing posttranslational modifications as they typically are labile, f…

Representative Results

The protocol for the newly developed TMT16, including labeling reaction, desalting, and LC-MS conditions, has been systematically optimized41. Furthermore, we directly compared the 11-plex and 16-plex methods by using them to analyze the same human AD samples41. After optimization of the key parameters for TMT16, both TMT11 and TMT16 methods yield similar proteome coverage, identification, and quantification > 100,000 peptides in > 10,000 human proteins. <p clas…

Discussion

An optimized protocol for TMT16-based deep proteome profiling has been implemented successfully in earlier publications12,13,41. With this current protocol, more than 10,000 unique proteins from up to 16 different samples can be routinely quantified in a single experiment with high precision.

To obtain high-quality results, it is important to pay attention to critical steps throughout the protocol. In…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was partially supported by the National Institutes of Health (R01GM114260, R01AG047928, R01AG053987, RF1AG064909, and U54NS110435) and ALSAC (American Lebanese Syrian Associated Charities). The MS analysis was performed in St. Jude Children’s Research Hospital’s Center of Proteomics and Metabolomics, which is partially supported by NIH Cancer Center Support Grant (P30CA021765). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Materials

10% Criterion TGX Precast Midi Protein Gel Biorad 5671035
10X TGS (Tris/Glycine/SDS) Buffer BioRad 161-0772
4–20% Criterion TGX Precast Midi Protein Gel Biorad 5671095
50% Hydroxylamine Thermo Scientific 90115
6 X SDS Sample Loading Buffer Boston Bioproducts Inc BP-111R
Ammonium Formate (NH4COOH) Sigma 70221-25G-F
Ammonium Hydroxide, 28% Sigma 338818-100ml
Bullet Blender Next Advance BB24-AU
Butterfly Portfolio Heater Phoenix S&T PST-BPH-20
C18 Ziptips Harvard Apparatus 74-4607 Used for desalting
Dithiothreitol (DTT) Sigma D5545
DMSO Sigma 41648
Formic Acid Sigma 94318
Fraction Collector Gilson FC203B
Gel Code Blue Stain Reagent Thermo 24592
Glass Beads Next Advance GB05
HEPES Sigma H3375
HPLC Grade Acetonitrile Burdick & Jackson AH015-4
HPLC Grade Water Burdick & Jackson AH365-4
Iodoacetamide (IAA) Sigma I6125
Lys-C Wako 125-05061
Mass Spectrometer Thermo Scientific Q Exactive HF
MassPrep BSA Digestion Standard Waters 186002329
Methanol Burdick & Jackson AH230-4
Nanoflow UPLC Thermo Scientific Ultimate 3000
Pierce BCA Protein Assay kit Thermo Scientific 23225
ReproSil-Pur C18 resin, 1.9um Dr. Maisch GmbH r119.aq.0003
Self-Pack Columns New Objective PF360-75-15-N-5
SepPak 1cc 50mg Waters WAT054960 Used for desalting
Sodium Deoxycholate Sigma 30970
Speedvac Thermo Scientific SPD11V
TMTpro 16plex Label Reagent Set Thermo Scientific A44520
Trifluoroacetic Acid (TFA) Applied Biosystems 400003
Trypsin Promega V511C
Ultra-micro Spin Column,C18 Harvard apparatus 74-7206 Used for desalting
Urea Sigma U5378
Xbridge Column C18 column Waters 186003943 Used for basic pH LC

References

  1. Levy, M. J., Washburn, M. P., Florens, L. Probing the sensitivity of the orbitrap lumos mass spectrometer using a standard reference protein in a complex background. Journal of Proteome Research. 17 (10), 3586-3592 (2018).
  2. Bekker-Jensen, D. B., et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Systems. 4 (6), 587-599 (2017).
  3. Mertins, P., et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 534 (7605), 55-62 (2016).
  4. Frost, D. C., Greer, T., Li, L. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics. Analytical Chemistry. 87 (3), 1646-1654 (2015).
  5. Moulder, R., Bhosale, S. D., Goodlett, D. R., Lahesmaa, R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. Mass Spectrometry Reviews. 37 (5), 583-606 (2018).
  6. Wang, H., et al. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nature Communications. 10 (1), 3718 (2019).
  7. Rauniyar, N., Yates, J. R. Isobaric labeling-based relative quantification in shotgun proteomics. Journal of Proteome Research. 13 (12), 5293-5309 (2014).
  8. Hogrebe, A., et al. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nature Communications. 9 (1), 1045 (2018).
  9. Dayon, L., et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Analytical Chemistry. 80 (8), 2921-2931 (2008).
  10. Stepanova, E., Gygi, S. P., Paulo, J. A. Filter-based protein digestion (FPD): A detergent-free and scaffold-based strategy for TMT workflows. Journal of Proteome Research. 17 (3), 1227-1234 (2018).
  11. McAlister, G. C., et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Analytical Chemistry. 84 (17), 7469-7478 (2012).
  12. Thompson, A., et al. TMTpro: Design, synthesis, and initial evaluation of a proline-based isobaric 16-plex tandem mass tag reagent set. Analytical Chemistry. 91 (24), 15941-15950 (2019).
  13. Li, J., et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nature Methods. 17 (4), 399-404 (2020).
  14. Arul, A. B., Robinson, R. A. S. Sample Multiplexing Strategies in Quantitative Proteomics. Analytical Chemistry. 91 (1), 178-189 (2019).
  15. Labib, M., Kelley, S. O. Single-cell analysis targeting the proteome. Nature Reviews Chemistry. 4 (3), 143-158 (2020).
  16. Ren, R. J., Dammer, E. B., Wang, G., Seyfried, N. T., Levey, A. I. Proteomics of protein post-translational modifications implicated in neurodegeneration. Translational Neurodegeneration. 3 (1), 23 (2014).
  17. Pagel, O., Loroch, S., Sickmann, A., Zahedi, R. P. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Review of Proteomics. 12 (3), 235-253 (2015).
  18. Mertins, P., et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nature Protocols. 13 (7), 1632-1661 (2018).
  19. Aebersold, R., Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature. 537 (7620), 347-355 (2016).
  20. Bai, B., et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron. 105 (6), 975-991 (2020).
  21. Kelstrup, C. D., et al. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field orbitrap mass spectrometer. Journal of Proteome Research. 13 (12), 6187-6195 (2014).
  22. Meier, F., et al. Online parallel accumulation – serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Molecular & Cellular Proteomics. 17 (12), (2018).
  23. Schweppe, D. K., et al. Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics. Journal of Proteome Research. 19 (5), 2026-2034 (2020).
  24. Wang, H., et al. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. Journal of Proteome Research. 14 (2), 829-838 (2015).
  25. Dey, K. K., et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clinical Proteomics. 16, 16 (2019).
  26. Bai, B., et al. Deep profiling of proteome and phosphoproteome by isobaric labeling, extensive liquid chromatography, and mass spectrometry. Methods in Enzymology. 585, 377-395 (2017).
  27. High, A. A., et al. Deep proteome profiling by isobaric labeling, extensive liquid chromatography, mass spectrometry, and software-assisted quantification. Journal of Visualized Experiments. (129), e56474 (2017).
  28. Chick, J. M., et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 534 (7608), 500-505 (2016).
  29. Wang, Z., et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature. 558 (7710), 435-439 (2018).
  30. Tan, H., et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 46 (3), 488-503 (2017).
  31. Eden, E., et al. Proteome Half-Life Dynamics in Living Human Cells. Science. 331 (6018), 764 (2011).
  32. Kleiman, L. B., Maiwald, T., Conzelmann, H., Lauffenburger, D. A., Sorger, P. K. Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. Molecular Cell. 43 (5), 723-737 (2011).
  33. Mertins, P., et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Molecular & Cellular Proteomics. 13 (7), 1690 (2014).
  34. Xu, P., Duong, D. M., Peng, J. Systematical optimization of reverse-phase chromatography for shotgun proteomics. Journal of Proteome Research. 8 (8), 3944-3950 (2009).
  35. Wang, Y., et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 11 (10), 2019-2026 (2011).
  36. Yang, F., Shen, Y., Camp, D. G., Smith, R. D. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Review of Proteomics. 9 (2), 129-134 (2012).
  37. Niu, M., et al. Extensive peptide fractionation and y(1) ion-based interference detection method for enabling accurate quantification by isobaric labeling and mass spectrometry. Analytical Chemistry. 89 (1), 2956-2963 (2017).
  38. Wang, X., et al. A tag-based database search tool for peptide identification with high sensitivity and accuracy. Molecular & Cellular Proteomics. 13 (12), 3663 (2014).
  39. Li, Y., et al. JUMPg: An integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. Journal of Proteome Research. 15 (7), 2309-2320 (2016).
  40. Elias, J. E., Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods. 4 (3), 207-214 (2007).
  41. Wang, Z., et al. 27-plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer’s disease. Analytical Chemistry. 92 (10), 7162-7170 (2020).
  42. Ow, S. Y., et al. iTRAQ underestimation in simple and complex mixtures: “The good, the bad and the ugly”. Journal of Proteome Research. 8 (11), 5347-5355 (2009).
  43. Karp, N. A., et al. Addressing accuracy and precision issues in iTRAQ quantitation. Molecular & Cellular Proteomics. 9 (9), 1885-1897 (2010).
  44. Ting, L., Rad, R., Gygi, S. P., Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nature Methods. 8 (11), 937-940 (2011).
  45. Gygi, J. P., et al. A triple knockout isobaric-labeling quality control platform with an integrated online database search. Journal of The American Society for Mass Spectrometry. 31 (7), 1344-1349 (2020).
  46. Savitski, M. M., et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. Journal of Proteome Research. 12 (8), 3586-3598 (2013).
  47. Ong, S. E., et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics. 1 (5), 376 (2002).
  48. Cox, J., et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics. 13 (9), 2513 (2014).
  49. Brenes, A., Hukelmann, J., Bensaddek, D., Lamond, A. I. Multibatch TMT reveals false positives, batch effects and missing values. Molecular & Cellular Proteomics. 18 (10), 1967-1980 (2019).
  50. Yu, J., Peng, J., Chi, H. Systems immunology: Integrating multi-omics data to infer regulatory networks and hidden drivers of immunity. Current Opinion in Systems Biology. 15, 19-29 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Wang, Z., Kavdia, K., Dey, K. K., Pagala, V. R., Kodali, K., Liu, D., Lee, D. G., Sun, H., Chepyala, S. R., Cho, J., Niu, M., High, A. A., Peng, J. High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry. J. Vis. Exp. (162), e61684, doi:10.3791/61684 (2020).

View Video