Summary

使用刺激拉曼散射显微镜对 卡诺哈布迪炎电子人 中的脂质存储动力学进行无标签成像

Published: May 28, 2021
doi:

Summary

刺激拉曼散射(SRS)显微镜允许选择性,无标签成像的特定化学莫伊蒂,它已被有效地用于图像脂质分子在体内。在这里,我们简要介绍了SRS显微镜原理,并描述了用于 在卡诺哈布迪炎电子群中成像脂质储存的方法。

Abstract

脂质代谢是细胞和生物体健康必需的基本生理过程。脂质代谢的调节障碍经常导致肥胖和许多相关疾病,包括心血管疾病、II型糖尿病和癌症。为了推进目前对脂质代谢调节的认识,精确测量体内脂质储存水平的定量方法在时间和空间上变得越来越重要和有用。分析脂质储存的传统方法是半定量进行微观评估或缺乏生化测量的时空信息。刺激拉曼散射(SRS)显微镜是一种无标签的化学成像技术,能够快速和定量地检测活细胞中的脂质,具有亚细胞分辨率。由于对比度利用了内在分子振动,SRS显微镜还允许对活体动物的脂质进行四维跟踪。近十年来,SRS显微镜在生物医学研究中广泛应用于小分子成像,克服了传统荧光染色和脂质提取方法的主要局限性。在实验室中,我们结合了SRS显微镜与强大的模型生物体 Caenorhabditis电子人 可用的遗传和生化工具,以研究脂质液滴在不同细胞和组织中的分布和异质性,并最终发现调节脂质代谢的新型保守信号通路。在这里,我们介绍了SRS显微镜的工作原理和详细设置,并提供了方法,用于量化脂质储存在野生类型和胰岛素信号不足突变 C.elegans的不同发展时间点。

Introduction

肥胖已成为威胁全球三分之一人口的全球健康问题,并提出了严重的医疗问题,因为它与不良的心理健康1 和致命的疾病,包括糖尿病2,心血管疾病3 和某些类型的癌症4。脂质代谢研究对于更好地了解肥胖背后的生物学问题至关重要。脂质储存的快速和具体量化需要检测脂肪酸及其衍生物,以及含有固醇的代谢物,具有高灵敏度,最好是空间信息。脂质是具有挑战性的图像目标,因为它们缺乏内在荧光,不容易被荧光标记。荧光标签通常大于脂质分子,因此,在体内应用中,可能具有化学侵入性和不切实际性。无标签或最小标签策略是必要的,以保持脂质分子5的疏水结构。成像技术的最新发展为活细胞、组织和生物体中脂质的无标签成像创造了令人兴奋的机会。

生物样本中脂质储存分析的传统方法包括生化检测和用脂质染料染色协议。涉及质谱仪 (MS) 的生化定量测定在其分子可解性方面是无可比拟的,但它们需要非常大的样本量,样品制备通常需要几个小时,从而限制了它们对生活系统5的实时成像应用。这些测定的另一个主要限制是缺乏空间信息。另一方面,脂质染料,如油红O和苏丹黑提供组织和细胞分布的脂质储存细胞器,与MS技术相比,这些染色方法成本低,易于执行。然而,这些染色协议需要固定,这可以影响脂质液滴的疏水性质,产生人为的变化,其结构,并导致实验之间的不一致6。与生化和染色技术相关的技术困难导致寻找无标签方法来成像脂质分子,并导致在脂质成像中使用连贯的拉曼散射 (CRS) 显微镜的迅速增加。

拉曼效应首先被拉曼和克里希南所识别,他们报告说,在与光子相互作用时,分子可以产生散射光,波长(称为雷利散射)没有变化,或者很少改变波长(称为拉曼散射),波长的变化是分子7内功能化学组的特征。当分子内部的化学键被一种称为泵光子的事故光子激发到更高的振动能量水平时,称为斯托克斯光子的分散光子的能量就会变低。否则,如果化学键最初处于较高水平,则可达到较低的振动能量水平,而分散的光子获得能量,成为抗斯托克斯光子。事件与分散光子之间的频率差异称为拉曼移位。分子内的每个化学键都有一个特征和可量化的拉曼移位。例如,CH2 键具有2,845厘米-1的拉曼移位,富集脂肪酸链8。这种自发的拉曼信号通常非常微弱,这极大地限制了传统自发拉曼显微镜的成像速度。多年来,已经开发出各种方法,以提高自发拉曼显微镜的成像速度和灵敏度。连贯拉曼散射显微镜,包括连贯的反斯托克斯拉曼散射(CARS)显微镜和刺激拉曼散射(SRS)显微镜,是最新的进展。CARS 和 SRS 的工作原理略有不同,但两者都是无标签技术,具有实时成像能力,可以生成脂质存储动态的空间和时间信息,并且只需要少量样本。CARS显微镜具有非共振背景,来自各种非线性过程,而CARS信号也与分子浓度有非线性关系,共同使定量过程复杂化与 CARS 显微镜不同,SRS 显微镜不会生成非共振背景信号,并且对感兴趣分子的浓度提供线性依赖。因此,目前SRS显微镜更广泛地用于脂质成像。

在 SRS 显微镜中,当兴奋时,弱自发拉曼信号可以放大两个同步激光束,其频率差异与化学键振动频率相匹配。由于连贯的兴奋,分子将经历向兴奋状态的增强过渡。因此,斯托克斯光子发电的速度得到提高。因此,传输的”斯托克斯”光束的强度增加(刺激拉曼增益,SRG),传输的”泵”光束的强度降低(刺激拉曼损失,SRL)。SRG或SRL信号的检测是刺激拉曼散射(SRS)显微镜成像分子的基础与特定化学键10。如果两个激光束之间的频率差异与感兴趣分子内化学键的振动频率不匹配,则不会生成 SRG 或 SRL 信号。SRS显微镜的成像速度约为每像素2微秒或每帧1秒,这比自发拉曼显微镜11快得多。SRS显微镜的典型横向分辨率有限,约为300纳米。此外,SRS显微镜的双光子光学过程允许对相对厚的组织样本进行体积3D成像,成像深度可达300-500 μm。总体而言,SRS显微镜提供了一种高效、无标签的成像技术,可检测特定的生物分子,尤其是脂质。

脂质液滴是单膜细胞,是中性脂质的主要细胞储存部位,包括三氯丁二醇 (TAGs) 和胆固醇酯 (CEs)。这些脂质分子脂肪酸链中的CH2键在兴奋8时产生2,845厘米-1的强烈SRS信号,从而能够检测和量化完整细胞、组织部分甚至整个生物体12、13、14、15中的储血脂水平。特别是,C. elegans由于其透明度,对脂质成像研究很有用。与哺乳动物一样,C.elegans也在脂质液滴中储存脂质,脂质分子的合成和降解途径被高度保存在此协议中,我们将提供SRS显微镜的工作原理,其基本设置,并描述其在C.elegans脂质成像中使用的方法。

Protocol

1. 刺激拉曼散射显微镜的仪器设置 注:SRS显微镜系统采用皮秒激光器,泵集成光学参数振荡器和共聚焦激光扫描显微镜。振荡器提供两个象形脉冲列车,包括1,064 nm的斯托克斯光束和700-990纳米之间的泵束。两束光束的时空重叠在激光内部实现。内置的光电调制器 (EOM) 专为 SRS 显微镜设计。该协议将侧重于将激光与显微镜耦合,以及该系统的日常运行(图1)…

Representative Results

胰岛素信号是影响发育、生殖、寿命和新陈代谢的重要内分泌途径。在蠕虫中,胰岛素信号包括大约40个胰岛素样肽配体、胰岛素样生长因子受体正牙DAF-2、下游PI3K/AKT激酶级联和FoxO转录因子正词,DAF-1620。缺乏胰岛素受体的daf-2突变体,其肠道中脂质液滴较多,蠕虫脂质储存组织21,22。使用 SRS 显微镜,我们量化了成年后年龄同…

Discussion

为了预防肥胖及其相关的代谢紊乱,已经开展了重要的研究工作,以更好地了解脂质平衡的调控机制。对于生物样本中脂质分子的定量检测,SRS显微镜的无标签成像已被证明是生化检测和其他染色方法的可靠替代品。我们小组和其他人通过结合使用C.elegans和SRS显微镜12、18、28、29、30、31,揭示了脂质代谢调节?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH赠款R01AG045183(M.C.W.)、R01AT009050(M.C.W.)、R01AG062257(M.C.W.) 的支持。 DP1DK113644(M.C.W.),迪姆斯基金会(M.C.W.)的3月,韦尔奇基金会(M.C.W.),以及HHMI调查员(M.C.W.)。我们感谢卡诺哈布迪炎遗传学中心 (CGC) 的 C. elegans 菌株。

Materials

A/D converter Olympus Analog Unit
Agarose GeneMate 3119 For making agarose pads
Alignment tool – adapter Thorlabs SM1A4 For mounting the tool on scope
Alignment tool – target Thorlabs VRC2SM1 For viewing IR laser
Alignment tool – tube Thorlabs SM1L40 Length can vary
Autocorrelator (Optional) APE pulseCheck
Bandpass filter minicircuits BBP-21.4+ if modulated at 20MHz or KR Electronics 2724 if modulated at 8 MHz For signal with modulation frequency filtering
BNC cables
Dissection microscope Nikon SMZ800 For handling and picking worms for imaging
Dodecane Sigma-Aldrich 44010 Used for calibration of the SRS signal
Filter Chroma Technology 890/220 CARS For removing Stokes beam
General purpose laboratory labeling tape VWR 89097 For making agarose pads
Glass coverslips VWR 48393-106 For covering worms for imaging
Glass microscope slide VWR 16004-422 For making agarose pads
Laser scanning microscope Olympus FV3000
Lens Thorlabs L1: AC254-050-B
L2: AC254-075-B
For beam expander
Lock-in amplifier Zurich HF2LI
Lowpass filter minicircuits BLP-1.9+ For power supply noise suppression
Mirrors Thorlabs BB1-E03 For relay and periscope
Objective Olympus UPlanSAPO 20x 0.75, UPlanSAPO 60XW 1.20
Photodiode Thorlabs FDS1010
Picosecond laser source APE picoEmerald
Power supply TEKPOWER TP1342U For photodiode, reversed 50V voltage
Sodium azide Sigma S2002 For anaesthesizing the worms
Worm picker WormStuff 59-AWP

References

  1. Luppino, F. S., et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry. 67 (3), 220-229 (2010).
  2. Eckel, R. H., et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized. Diabetes Care. 34 (6), 1424-1430 (2011).
  3. Poirier, P., et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arteriosclerosis, Thrombosis, and Vascular Biology. 26 (5), 968-976 (2006).
  4. Bhaskaran, K., et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet. 384 (9945), 755-765 (2014).
  5. Shen, Y., Hu, F., Min, W. Raman imaging of small biomolecules. Annual Review of Biophysics. 48, 347-369 (2019).
  6. Daemen, S., van Zandvoort, M., Parekh, S. H., Hesselink, M. K. C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism. 5 (3), 153-163 (2016).
  7. Syed, A., Smith, E. A. Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers. Annual Review of Analytical Chemistry. 10 (1), 271-291 (2017).
  8. Thomas, G. J. Raman spectroscopy of protein and nucleic acid assemblies. Annual Review of Biophysics and Biomolecular Structure. 28, 1-27 (1999).
  9. Evans, C. L., Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annual Review of Analytical Chemistry. 1, 883-909 (2008).
  10. Freudiger, C. W., et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322 (5909), 1857-1861 (2008).
  11. Hu, F., Shi, L., Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods. 16 (9), 830-842 (2019).
  12. Wang, M. C., Min, W., Freudiger, C. W., Ruvkun, G., Xie, X. S. RNAi screening for fat regulatory genes with SRS microscopy. Nature Methods. 8 (2), 135-138 (2011).
  13. Wei, L., Yu, Y., Shen, Y., Wang, M. C., Min, W. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 110 (28), 11226-11231 (2013).
  14. Wei, L., et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nature Methods. 11 (4), 410-412 (2014).
  15. Ramachandran, P. V., Mutlu, A. S., Wang, M. C. Label-free biomedical imaging of lipids by stimulated Raman scattering microscopy. Current Protocols in Molecular Biology. 109, 31 (2015).
  16. Srinivasan, S. Regulation of body fat in Caenorhabditis elegans. Annual Review of Physiology. 77, 161-178 (2015).
  17. Vrablik, T. L., Petyuk, V. A., Larson, E. M., Smith, R. D., Watts, J. L. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochimca Et Biophysica Acta. 1851 (10), 1337-1345 (2015).
  18. Yu, Y., Mutlu, A. S., Liu, H., Wang, M. C. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nature Communications. 8 (1), 865 (2017).
  19. Kelley, L. C., et al. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nature Protocols. 12 (10), 2081-2096 (2017).
  20. Murphy, C. T., Hu, P. J. Insulin/insulin-like growth factor signaling in C. elegans. WormBook. , 1-43 (2013).
  21. Shi, X., et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. Journal of Lipid Research. 54 (9), 2504-2514 (2013).
  22. Watts, J. L., Ristow, M. Lipid and carbohydrate metabolism in Caenorhabditis elegans. 유전학. 207 (2), 413-446 (2017).
  23. Kimura, K. D., Tissenbaum, H. A., Liu, Y., Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 277 (5328), 942-946 (1997).
  24. Kwon, E. S., Narasimhan, S. D., Yen, K., Tissenbaum, H. A. A new DAF-16 isoform regulates longevity. Nature. 466 (7305), 498-502 (2010).
  25. Chen, A. T., et al. Longevity genes revealed by integrative analysis of isoform-specific daf-16/FoxO mutants of Caenorhabditis elegans. 유전학. 201 (2), 613-629 (2015).
  26. Lee, R. Y., Hench, J., Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Current Biology. 11 (24), 1950-1957 (2001).
  27. Mutlu, A. S., Gao, S. M., Zhang, H., Wang, M. C. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nature Communications. 11 (1), 1450 (2020).
  28. Chen, A. J., et al. Fingerprint Stimulated Raman Scattering imaging reveals retinoid coupling lipid metabolism and survival. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry. 19 (19), 2500-2506 (2018).
  29. Li, X., et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by Stimulated Raman Scattering microscopy. Analytical Chemistry. 91 (3), 2279-2287 (2019).
  30. Lin, C. J., Wang, M. C. Microbial metabolites regulate host lipid metabolism through NR5A-Hedgehog signalling. Nature Cell Biology. 19 (5), 550-557 (2017).
  31. Fu, D., et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. Journal of the American Chemical Society. 136 (24), 8820-8828 (2014).
  32. Perez, C. L., Van Gilst, M. R. A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metabolism. 8 (3), 266-274 (2008).
  33. Elle, I. C., Rodkaer, S. V., Fredens, J., Faergeman, N. J. A method for measuring fatty acid oxidation in C. elegans. Worm. 1 (1), 26-30 (2012).
  34. Ezcurra, M., et al. elegans eats its own intestine to make yolk leading to multiple senescent pathologies. Current Biology. 28 (16), 2544-2556 (2018).
  35. Lu, F. K., et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 112 (37), 11624-11629 (2015).
  36. Long, R., et al. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering. Chemical Communications. 54 (2), 152-155 (2018).
  37. Zhao, Z., Shen, Y., Hu, F., Min, W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst. 142 (21), 4018-4029 (2017).
  38. Liao, C. S., et al. In vivo and in situ spectroscopic imaging by a handheld Stimulated Raman Scattering Microscope. ACS Photonics. 5 (3), 947-954 (2018).
  39. Lee, H. J., et al. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Scientific Reports. 5, 7930 (2015).
  40. Wang, P., et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angewandte Chemie (International Edition in English). 53 (44), 11787-11792 (2014).
  41. Chen, W. W., et al. Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nature Chemical Biology. 16 (10), 1087-1095 (2020).
  42. Freudiger, C. W., et al. Stimulated Raman Scattering microscopy with a robust fibre laser source. Nature Photonics. 8 (2), 153-159 (2014).
  43. Brinkmann, M., et al. Portable all-fiber dual-output widely tunable light source for coherent Raman imaging. Biomedical Optics Express. 10 (9), 4437-4449 (2019).

Play Video

Cite This Article
Mutlu, A. S., Chen, T., Deng, D., Wang, M. C. Label-Free Imaging of Lipid Storage Dynamics in Caenorhabditis elegans using Stimulated Raman Scattering Microscopy. J. Vis. Exp. (171), e61870, doi:10.3791/61870 (2021).

View Video