Summary

使用基于曲线的转换工具量化纤维胶原蛋白组织

Published: November 11, 2020
doi:

Summary

在这里,我们提出了一个协议,使用基于曲线转换的开源 MATLAB 软件工具,用于量化正常组织和患病组织的细胞外基质中的纤维状胶原蛋白组织。此工具可应用于胶原纤维或其他类型的线状结构的图像。

Abstract

纤维状胶原蛋白是突出的细胞外基质 (ECM) 成分,其拓扑变化已证明与乳腺癌、卵巢癌、肾脏癌和胰腺癌等多种疾病的进展有关。免费提供的光纤量化软件工具主要侧重于光纤对齐或方向的计算,它们受到手动步骤要求、嘈杂背景中光纤边缘检测不准确或缺乏本地化特征特征等限制。本文中描述的胶原纤维定量工具的特点是使用曲线变换 (CT) 启用的最佳多尺度图像表示。这种算法方法允许去除纤维胶原蛋白图像中的噪声,并增强光纤边缘,直接从光纤中提供位置和方向信息,而不是使用从其他工具获得的间接像素或窗口信息。此基于 CT 的框架包含两个单独但链接的包,名为”CT-FIRE”和”曲线对齐”,可在全球、感兴趣区域 (ROI) 或单个光纤基础上量化光纤组织。这个量化框架已经开发了十多年,现在已经发展成为一个全面和用户驱动的胶原蛋白量化平台。使用此平台,可以测量多达 30 种光纤功能,包括长度、角度、宽度和直度等单个纤维特性,以及密度和对齐度等批量测量。此外,用户可以测量光纤角度相对于手动或自动分割的边界。该平台还提供了多个附加模块,包括用于投资回报率分析、自动边界创建和后处理的模块。使用此平台不需要事先的编程或图像处理经验,它可以处理包括数百或数千张图像在内的大型数据集,从而能够高效量化用于生物或生物医学应用的胶原纤维组织。

Introduction

纤维胶原蛋白是突出的结构 ECM 成分。他们的组织变化影响组织功能,并可能与许多疾病的进展有关,从骨质疏松症1,心脏功能障碍2,伤口愈合3到不同类型的癌症,包括乳腺癌4,5,6,卵巢7,8,9,胰腺癌10。许多已建立的成像模式可用于可视化纤维胶原蛋白,如第二谐波一代显微镜11,污渍或染料与明亮的场或荧光显微镜或偏振光显微镜12,液晶基极化显微镜(LC-PolScope)13,电子显微镜14。随着纤维胶原蛋白组织的重要性越来越明显,而且这些方法的使用也越来越多,改进胶原纤维分析方法的需求也越来越大。

有许多努力来开发自动测量纤维状胶原蛋白的计算方法。免费提供的软件工具主要侧重于光纤对齐或方向的计算,采用第一个衍生或结构张力像素15,16,或傅立业基于转换的频谱分析图像磁贴17。所有这些工具都受到限制,例如手动步骤的要求、在嘈杂的背景中检测光纤边缘的不准确性或缺乏本地化特征特征。

与其他免费提供的开源免费软件工具相比,本协议中描述的方法使用CT——一种最佳、多尺度、定向的图像表示方法——去除纤维胶原蛋白图像中的噪声,增强或跟踪光纤边缘。有关位置和方向的信息可以直接从光纤提供,而不是使用间接像素或窗口信息来推断光纤组织的指标。这种基于CT的框架18、19、20、21可以在全球、ROI或光纤的基础上量化光纤组织,主要通过两个单独但相互关联的包,分别命名为”CT-FIRE”18、21和”曲线对齐“19、21。就软件的实现而言,在 CT-FIRE 中,多比例的 CT 系数可用于重建增强边缘和降低噪音的图像。然后,将单个光纤提取算法应用于 CT 重建图像中,以跟踪光纤以查找其代表性的中心点,将光纤分支从中心点延伸,并将光纤分支连接起来,形成光纤网络。在 Curve 对齐中,用户指定比例的 CT 系数可用于跟踪本地光纤方向,其中提取曲线小径的方向和位置并进行分组,以估计相应位置的光纤方向。由此产生的量化框架已经开发了十多年,在功能、用户界面和模块化等许多方面都取得了长足的发展。例如,此工具可以可视化局部光纤方向,并允许用户测量多达 30 个光纤功能,包括长度、角度、宽度和直度等单个光纤特性,以及密度和对齐等批量测量。此外,用户可以测量光纤角度相对于手动或自动分割的边界,例如,在基于图像的生物标志物发展在乳腺癌22和胰腺癌研究10发挥重要作用。此平台提供多个功能模块,包括用于投资回报率分析、自动边界创建和后处理的功能模块。投资回报率模块可用于注释不同形状的投资回报率,并进行相应的投资回报率分析。作为应用示例,自动边界创建模块可用于用第二谐波生成 (SHG) 图像注册血氧林和 eosin (H&E) 亮场图像,并从注册的 H&E 图像中生成肿瘤边界的图像掩膜。后处理模块可以帮助处理和集成来自单个图像的输出数据文件,以便进行可能的统计分析。

此量化平台不需要事先的编程或图像处理经验,可以处理包括数百或数千张图像在内的大型数据集,从而能够高效量化用于生物或生物医学应用的胶原蛋白组织。它已被包括我们在内的世界各地许多研究人员广泛应用于不同的研究领域。有四个主要出版物CT-FIRE和曲线对齐18,19,20,21,其中前三个已被引用272次(根据谷歌学者2020-05-04年)。对引用该平台(CT-FIRE 或曲线对齐)的出版物的审查表明,大约有 110 篇期刊论文直接用于分析,其中大约 35 篇出版物与我们的小组合作,其他出版物(约 75 篇)由其他组撰写。例如, 该平台用于以下研究:乳腺癌22,23,24,胰腺癌10,25,肾癌9,26,伤口愈合3,27,28,29,30,卵巢癌8,31,7,子宫韧带32,缺氧登丁3 3、基底细胞癌34例、缺氧肉瘤35例、软骨组织36例、心脏功能障碍37例、神经元38例、胶质母细胞瘤39例、淋巴收缩40例、纤维化41例、胃癌42例、微管癌43例、膀胱纤维化44例。图 1演示了 Curve 对齐的癌症成像应用,从 SHG 图像中查找乳腺癌19的肿瘤相关胶原蛋白特征。图 2描述了此平台的典型示意图工作流程。虽然这些工具已经审查技术18,19,21,和常规协议20对齐分析曲线对齐也可用,一个视觉协议,显示所有的基本功能可能是有用的。如本文所示,可视化协议将促进使用此平台的学习过程,并更有效地解决用户可能提出的问题和问题。

Protocol

注:此协议描述了使用 CT-FIRE 和曲线对齐进行胶原蛋白量化。这两种工具具有互补但不同的主要目标,并在一定程度上联系在一起。CT-FIRE 可以从曲线对齐接口启动,以执行大多数操作,但高级处理后和投资回报率分析除外。对于CT-FIRE的完整操作,应单独启动。 1. 图像收集和图像要求 注:该工具可以处理任何图像文件与线状结构可读的MATLAB,无论用于收?…

Representative Results

这些方法已成功地应用于许多研究。一些典型应用包括:1) Conklin 等人22 使用曲线对齐来计算肿瘤相关的胶原蛋白特征,并发现胶原纤维更频繁地垂直于原位导管癌 (DCIS) 病变中的导管周长:2) Drifka等人使用曲线 对齐中的CT-FIRE模式来量化胰腺导管腺癌和正常/慢性胰腺炎组织的频闪胶原对齐,发现与正常/慢性组织相比,癌组织中的对齐度有所提高:3) Alkm…

Discussion

此协议描述了使用 CT-FIRE 和曲线对齐进行纤维胶原蛋白量化,可应用于任何具有胶原纤维或其他线状或纤维状拉伸结构的图像,这些结构适合 CT-FIRE 或曲线对齐进行分析。例如,弹性蛋白或弹性纤维可以在此平台上以类似的方式进行处理。我们已经在计算产生的合成纤维21上测试了这两种工具。根据应用情况,用户应选择最适合其数据的分析模式。CT纤维分析模式可以直接使用CT?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢许多贡献者和用户的CT-FIRE和曲线对齐多年来,包括罗布诺瓦克博士, 卡罗琳·佩尔克博士、杰里米·布雷德费尔特博士、古内特·梅塔博士、安德鲁·莱希特博士、阿迪布·凯霍斯拉维博士、马特·康克林博士、杰恩·松鼠博士、保罗·普罗文扎诺博士、布伦达·奥格尔博士、帕特里夏·基利博士、约瑟夫·舒尔切夫斯基博士、苏珊娜·波尼克博士以及斯瓦蒂·阿南德和柯蒂斯·鲁登的其他技术贡献。这项工作得到了半导体研究公司、莫格里奇研究所的资助,国家卫生研究院向K.W.E.提供了R01CA19996、R01CA181385和U54CA210190。

Materials

CT-FIRE Univerity of Wisconsin-Madison N/A open source software available from https://eliceirilab.org/software/ctfire/
CurveAlign University of Wisconsin-Madison N/A open source software available from https://eliceirilab.org/software/curvealign/

References

  1. Nadiarnykh, O., et al. Second harmonic generation imaging microscopy studies of osteogenesis imperfecta. Journal of Biomedical Optics. 12 (5), 051805 (2007).
  2. Kouris, N. A., et al. A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regenerative Medicine. 6 (5), 569-582 (2011).
  3. LeBert, D. C., et al. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development. 142 (12), 2136-2146 (2015).
  4. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  5. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 1 (2008).
  6. Conklin, M. W., et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. The American Journal of Pathology. 178 (3), 1221-1232 (2011).
  7. Alkmin, S., et al. Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomaterialia. 100, 92-104 (2019).
  8. Campbell, K. R., Campagnola, P. J. Assessing local stromal alterations in human ovarian cancer subtypes via second harmonic generation microscopy and analysis. Journal of Biomedical Optics. 22 (11), 116008 (2017).
  9. Best, S. L., et al. Collagen organization of renal cell carcinoma differs between low and high grade tumors. BMC Cancer. 19 (1), 490 (2019).
  10. Drifka, C. R., et al. Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Modern Pathology. 28 (11), 1470-1480 (2015).
  11. Campagnola, P. J., et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophysical Journal. 82 (1), 493-508 (2002).
  12. Arun Gopinathan, P., et al. Study of collagen birefringence in different grades of oral squamous cell carcinoma using picrosirius red and polarized light microscopy. Scientifica. 2015, 1-7 (2015).
  13. Keikhosravi, A., et al. Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy. Biomedical Optics Express. 8 (9), 4243-4256 (2017).
  14. Quan, B. D., Sone, E. D. Cryo-TEM analysis of collagen fibrillar structure. Methods in Enzymology. 532, 189-205 (2013).
  15. Boudaoud, A., et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature Protocols. 9 (2), 457-463 (2014).
  16. Rezakhaniha, R., et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology. 11 (3-4), 461-473 (2012).
  17. Kartasalo, K., et al. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics. 16 (1), 1 (2015).
  18. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  19. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  20. Liu, Y., Keikhosravi, A., Mehta, G. S., Drifka, C. R., Eliceiri, K. W. Methods for quantifying fibrillar collagen alignment. Methods in Molecular Biology. 1627, 429-451 (2017).
  21. Liu, Y., et al. Fibrillar collagen quantification with curvelet transform based computational methods. Frontiers in Bioengineering and Biotechnology. 8, 198 (2020).
  22. Conklin, M. W., et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiology and Prevention Biomarkers. 27 (2), 138-145 (2018).
  23. Jallow, F., et al. Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer. Oncogene. 38 (43), 6913-6925 (2019).
  24. Smirnova, T., et al. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget. 7 (50), 82289 (2016).
  25. Fanous, M., Keikhosravi, A., Kajdacsy-Balla, A., Eliceiri, K. W., Popescu, G. Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma. Biomedical Optics Express. 11 (3), 1354-1364 (2020).
  26. Jiménez-Torres, J. A., Virumbrales-Muñoz, M., Sung, K. E., Lee, M. H., Abel, E. J., Beebe, D. J. Patient-specific organotypic blood vessels as an in vitro model for anti-angiogenic drug response testing in renal cell carcinoma. EBioMedicine. 42, 408-419 (2019).
  27. Govindaraju, P., Todd, L., Shetye, S., Monslow, J., Puré, E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biology. 75, 314-330 (2019).
  28. Henn, D., et al. Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model. International Wound Journal. 17 (4), 925-936 (2020).
  29. Rico-Jimenez, J., et al. Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy. BMJ Open Diabetes Research and Care. 8 (1), 000974 (2020).
  30. Israel, J. S., et al. Quantification of collagen organization after nerve repair. Plastic and Reconstructive Surgery Global Open. 5 (12), (2017).
  31. Rentchler, E. C., Gant, K. L., Drapkin, R., Patankar, M., Campagnola, P. J. Imaging collagen alterations in STICs and high grade ovarian cancers in the fallopian tubes by second harmonic generation microscopy. Cancers. 11 (11), 1805 (2019).
  32. Hu, C., et al. Imaging collagen properties in the uterosacral ligaments of women with pelvic organ prolapse using spatial light interference microscopy (SLIM). Frontiers in Physics. 7, 72 (2019).
  33. Guirado, E., et al. Disrupted protein expression and altered proteolytic events in hypophosphatemic dentin can be rescued by dentin matrix protein 1. Frontiers in Physiology. 11, 82 (2020).
  34. Kiss, N., et al. Quantitative analysis on ex vivo nonlinear microscopy images of basal cell carcinoma samples in comparison to healthy skin. Pathology & Oncology Research. 25 (3), 1015-1021 (2019).
  35. Lewis, D. M., et al. Collagen fiber architecture regulates hypoxic sarcoma cell migration. ACS Biomaterials Science & Engineering. 4 (2), 400-409 (2018).
  36. Moura, C. C., Bourdakos, K. N., Tare, R. S., Oreffo, R. O., Mahajan, S. Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging. Scientific Reports. 9 (1), 1-9 (2019).
  37. Murtada, S. I., et al. Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson-Gilford progeria syndrome. Journal of The Royal Society Interface. 17 (166), 0066 (2020).
  38. Nichol, R. H., Catlett, T. S., Onesto, M. M., Hollender, D., Gómez, T. M. Environmental elasticity regulates cell-type specific RHOA signaling and neuritogenesis of human neurons. Stem Cell Reports. 13 (6), 1006-1021 (2019).
  39. Pointer, K. B., et al. Association of collagen architecture with glioblastoma patient survival. Journal of Neurosurgery. 126 (6), 1812-1821 (2016).
  40. Razavi, M. S., Leonard-Duke, J., Hardie, B., Dixon, J. B., Gleason, R. L. Axial stretch regulates rat tail collecting lymphatic vessel contractions. Scientific Reports. 10 (1), 1-11 (2020).
  41. Xue, Y., et al. Valve leaflet-inspired elastomeric scaffolds with tunable and anisotropic mechanical properties. Polymers for Advanced Technologies. 31 (1), 94-106 (2020).
  42. Zhou, Z. H., et al. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis. Journal of Cancer. 8 (8), 1466 (2017).
  43. Zinn, A., et al. The small GTPase RhoG regulates microtubule-mediated focal adhesion disassembly. Scientific Reports. 9 (1), 1-15 (2019).
  44. Zwaans, B. M., et al. Radiation cystitis modeling: A comparative study of bladder fibrosis radio-sensitivity in C57BL/6, C3H, and BALB/c mice. Physiological Reports. 8 (4), (2020).
  45. Devine, E. E., Liu, Y., Keikhosravi, A., Eliceiri, K. W., Jiang, J. J. Quantitative second harmonic generation imaging of leporine, canine, and porcine vocal fold collagen. The Laryngoscope. 129 (11), 2549-2556 (2019).
  46. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  47. Zeitoune, A. A., et al. Epithelial ovarian cancer diagnosis of second-harmonic generation images: A semiautomatic collagen fibers quantification protocol. Cancer Informatics. 16, (2017).
  48. Wershof, E., et al. Matrix feedback enables diverse higher-order patterning of the extracellular matrix. PLoS Computational Biology. 15 (10), 1007251 (2019).
  49. Mostaço-Guidolin, L. B., et al. Fractal dimension and directional analysis of elastic and collagen fiber arrangement in unsectioned arterial tissues affected by atherosclerosis and aging. Journal of Applied Physiology. 126 (3), 638-646 (2019).
  50. Thain, D., Tannenbaum, T., Livny, M. Distributed computing in practice: the Condor experience. Concurrency and Computation: Practice and Experience. 17 (2-4), 323-356 (2005).

Play Video

Cite This Article
Liu, Y., Eliceiri, K. W. Quantifying Fibrillar Collagen Organization with Curvelet Transform-Based Tools. J. Vis. Exp. (165), e61931, doi:10.3791/61931 (2020).

View Video