Summary

使用超声成像的对比增强次谐波辅助压力估计 (SHAPE),重点是识别门静脉高压症

Published: December 05, 2020
doi:

Summary

通过人类慢性肝病患者的例子描述了利用注入对比微泡的次谐波超声成像(经过适当校准)无创估计环境压力的方案。

Abstract

长期以来,无创、准确测量人体内压力一直是一个重要但难以捉摸的临床目标。用于超声成像的造影剂是充满气体的封装微气泡(直径< 10 μm),可穿过整个脉管系统并将信号增强多达 30 dB。这些微气泡还产生非线性振荡,频率范围从次谐波(发射频率的一半)到更高次谐波。次谐波幅度与环境静水压力呈反比线性关系。这里介绍了一种能够执行实时次谐波辅助压力估计(SHAPE)的超声系统。在超声造影剂输注期间,激活了优化声学输出的算法。在此校准之后,次谐波微气泡信号(即SHAPE)对压力变化具有最高的灵敏度,可用于无创量化压力。SHAPE程序在识别肝脏门静脉高压症方面的效用是这里的重点,但该技术在许多临床场景中具有适用性。

Introduction

许多不同的超声造影剂(UCA)被批准用于心脏病学(特别是左心室混浊)和放射学(特别是成人和儿童肝脏病变特征)的临床应用。1 超声成像的灵敏度和特异性可以通过静脉内 (IV) 注射由脂质或蛋白质外壳封装的充满气体的微气泡(直径 < 10 μm)作为 UCA 来提高,UCA 穿过整个脉管系统并将信号增强高达 30 dB。1 这些UCA不仅增强了反向散射超声信号,而且在足够的声压(>200 kPa)下,它们还充当非线性振荡器。因此,在接收到的回波中将产生重要的能量成分,范围从次谐波和谐波到超谐波频率。12 这些非线性信号分量可以从组织和线性气泡回波中提取(例如使用脉冲反转),并用于创建对比特定的成像模式,例如次谐波成像(SHI),其接收频率为发射频率的一半(即f 0/2)。3 我们小组在人体临床试验中证明,SHI可以检测与各种肿瘤和组织相关的新血管和小动脉中的血流。456789

我们提倡不使用UCA作为血管示踪剂,而是通过监测次谐波对比气泡振幅变化来作为循环系统中无创压力估计的传感器。10这种称为次谐波辅助压力估计(SHAPE)的创新技术依赖于大多数商业UCA在体外测量的次谐波信号幅度与静水压力(高达186 mmHg)之间的反线性相关性(r2>0.90),如表1所示。10,11 但是应该注意的是,并非所有 UCA 都表现出这种行为。最值得注意的是,已经表明,来自UCA SonoVue(在美国称为Lumason)的次谐波信号最初随着静水压力的增加而上升,然后是平台期和下降阶段。12尽管如此,SHAPE提供了允许无创获得心脏和整个心血管系统的压力梯度以及肿瘤中的间质液压力的可能性。13,14151617 最近我们在商用超声扫描仪上实现了SHAPE算法的实时版本,并提供了概念验证,即SHAPE可以提供体内压力估计,患者的左心室和右心室误差小于3 mmHg。1617

迄今为止,SHAPE的最多经验是诊断门静脉高压症,入组了220多名受试者,并在一项多中心试验中证实了初步发现。1314 门静脉高压定义为门静脉与肝静脉或下腔静脉之间的压力梯度增加超过 5 mmHg,而临床上显着的门静脉高压 (CSPH) 需要梯度或等效值,肝静脉压梯度 (HVPG) ≥ 10 mmHg。18 CSPH 与胃食管静脉曲张、腹水、肝失代偿、术后失代偿和肝细胞癌的风险增加有关。1819 发生腹水的患者三年死亡率为 50%,发生腹水自发感染的患者一年死亡率为 70%。肝硬化患者胃食管静脉曲张形成年发病率为5-10%,出血年发生率为4-15%;每次出血发作都有高达20%的死亡风险。1819

本手稿描述了如何使用市售设备和UCA进行SHAPE研究,重点是识别患者肝脏中的门静脉高压症。详细解释了实现估算压力变化的最高灵敏度所需的关键校准程序。

Protocol

托马斯杰斐逊大学和宾夕法尼亚大学医院的机构审查委员会批准了该协议。该协议符合《健康保险流通与责任法案》。美国食品和药物管理局(FDA)为该协议发布了研究性新药批准(IND # 124,465至F. Forsberg)。GE Healthcare(挪威奥斯陆)提供了本研究中使用的UCA(Sonazoid; 表 1)。Sonazoid未被FDA批准用于美国的任何临床应用,这就是为什么需要IND的原因。其他获得 FDA 批准1</s…

Representative Results

与所有超声影像学检查一样,肝脏 SHAPE 的首要考虑因素是获得目标区域的最佳基线灰度图像,并确保(使用多普勒成像)不存在肝内门静脉分流或其他血管异常。在用于诊断门静脉高压的肝脏成像的情况下,关键是在同一深度上可视化门静脉和肝静脉,以尽量减少衰减的影响(图1)。 尽管UCA浓度不被认为是SHAPE程序10,23…

Discussion

长期以来,无创、准确测量人体内压力一直是一个重要但难以捉摸的临床目标。这里介绍的SHAPE测量协议实现了这一目标。SHAPE程序最关键的组成部分是优化算法,因为在最佳声功率输出下未获得的次谐波数据与静水压力的相关性较差。172223 在Logiq 9扫描仪上实现的该软件的初始版本容易在S曲线的导数中显示多个峰值(参?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了美国陆军医学研究材料司令部W81XWH-08-1-0503和W81XWH-12-1-0066的支持,AHA授予No0655441U和15SDG25740015以及NIH R21 HL081892,R21 HL130899,R21 HL089175,RC1 DK087365,R01 DK098526,R01 DK118964,R01 CA140338,R01 CA234428,Lantheus Medical Imaging和GE Healthcare,挪威奥斯陆。

Materials

2 mL syringe Becton Dickinson 309637 Used for reconstituting Sonazoid
10 mL saline-filled syringe Becton Dickinson 306545 Used for flushing line to verify IV access
500 mL saline bag Baxter Healthcare Corp 2131323 Used for co-infusion with Sonazoid
C1-6-D curvi-linear proble GE Healthcare H40472LT Used for liver imaging
Chemoprotect Spike Codan USA C355 Chemospike used for reconstituting Sonazoid
Discofix C Blue B. Braun Medical Inc 16494C 3-way stopcock
Intrafix Safeset 180 cm B. Braun Medical Inc 4063000 Infusion tubing
Logiq E10 ultrasound scanner GE Healthcare H4928US Used for conventional ultrasound imaging as well as for SHI and SHAPE
Luer lock 10 mL syringe Becton Dickinson 300912 For infusion of Sonazoid
Medfusion 3500 syringe pump Smiths Medical 3500-500 Used for infusing Sonazoid at 0.18 mL/kg/hour
Perfusor-leitung tubing 150 mm B. Braun Medical Inc 8722960 Extension line enabling syringe connection to patient's IV access
SHI/SHAPE software GE Healthcare H4920CI Contrast-specific imaging software
Sigma Spectrum infusion system Baxter Healthcare Corp 35700BAX Pump used for co-infusing saline at 120 mL/hour
Sonazoid GE Healthcare Gas-filled microbubble based ultrasound contrast agent
sterile water, 2 mL B. Braun Medical Inc Used for reconstituting Sonazoid
ultrasound gel Cardinal Health USG-250BT Used for contact between probe and patient
Venflon IV cannula 22GA Becton Dickinson 393202 Cannula needle for obtaining IV access

References

  1. Lyshchik, A. . Fundamentals of CEUS. , (2019).
  2. Leighton, T. G. . The Acoustic Bubble. , (1994).
  3. Forsberg, F., Shi, W. T., Goldberg, B. B. Subharmonic imaging of contrast agents. Ultrasonics. 38 (1-8), 93-98 (2000).
  4. Forsberg, F., Piccoli, C. W., Merton, D. A., Palazzo, J. P., Hall, A. L. Breast lesions: imaging with contrast-enhanced subharmonic US – initial experience. Radiology. 244 (3), 718-726 (2007).
  5. Sridharan, A., et al. Characterizing breast lesions using quantitative parametric 3D subharmonic imaging: a multi-center study. Academic Radiology. 27 (8), 1065-1074 (2020).
  6. Forsberg, F., et al. Subharmonic and endoscopic contrast imaging of pancreatic masses: a pilot study. Journal of Ultrasound in Medicine. 37 (1), 123-129 (2018).
  7. Delaney, L. J., et al. Characterization of adnexal masses using contrast-enhanced subharmonic imaging: a pilot study. Journal of Ultrasound in Medicine. 39 (5), 977-985 (2020).
  8. Eisenbrey, J. R., et al. Contrast-enhanced subharmonic and harmonic ultrasound of renal masses undergoing percutaneous cryoablation. Academic Radiology. 22 (7), 820-826 (2015).
  9. Gupta, I., et al. Transrectal subharmonic ultrasound imaging for prostate cancer detection. Urology. 138 (4), 106-112 (2020).
  10. Shi, W. T., Forsberg, F., Raichlen, J. S., Needleman, L., Goldberg, B. B. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound in Medicine and Biology. 25 (2), 275-283 (1999).
  11. Halldorsdottir, V. G., et al. Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions. Ultrasonic Imaging. 33 (3), 153-164 (2011).
  12. Nio, A. Q. X., et al. Optimal control of SonoVue microbubbles to estimate hydrostatic pressure. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 67 (3), 557-567 (2020).
  13. Eisenbrey, J. R., et al. Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology. 268 (2), 581-588 (2013).
  14. Gupta, I., et al. Diagnosing portal hypertension with noninvasive subharmonic pressure estimates from an ultrasound contrast agent. Radiology. , (2020).
  15. Nam, K., et al. Monitoring neoadjuvant chemotherapy for breast cancer by using three-dimensional subharmonic aided pressure estimation and imaging with US contrast agents: preliminary experience. Radiology. 285 (1), 53-62 (2017).
  16. Dave, J. K., et al. Non-invasive intra-cardiac pressure measurements using subharmonic-aided pressure estimation: proof of concept in humans. Ultrasound in Medicine and Biology. 43 (11), 2718-2724 (2017).
  17. Esposito, C., Dickie, K., Forsberg, F., Dave, J. K. Developing an interface and investigating optimal parameters for real-time intra-cardiac subharmonic aided pressure estimation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. , (2020).
  18. Bosch, J., Groszmann, R. J., Shah, V. H. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments. Journal of Hepatology. 62, 121-130 (2015).
  19. Procopet, B., Berzigotti, A. Diagnosis of cirrhosis and portal hypertension: imaging, non-invasive markers of fibrosis and liver biopsy. Gastroenterology Report. 5 (2), 79-89 (2017).
  20. Dietrich, C. F., et al. Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the liver-update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound in Medicine and Biology. , (2020).
  21. Gupta, I., et al. Effect of pulse shaping on subharmonic aided pressure estimation in vitro and in vivo. Journal of Ultrasound in Medicine. 36 (1), 3-11 (2017).
  22. Dave, J. K., et al. On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation. Ultrasonics. 53 (4), 880-888 (2013).
  23. Gupta, I., Eisenbrey, J. R., Machado, P., Stanczak, M., Wallace, K., Forsberg, F. On factors impacting subharmonic- aided pressure estimation (SHAPE). Ultrasonic Imaging. 41 (1), 35-48 (2019).
  24. Eisenbrey, J. R., Daecher, A., Kramer, M. R., Forsberg, F. Effects of needle and catheter size on commercially available ultrasound contrast agents. Journal of Ultrasound in Medicine. 34 (11), 1961-1968 (2015).
check_url/kr/62050?article_type=t

Play Video

Cite This Article
Forsberg, F., Gupta, I., Machado, P., Shaw, C. M., Fenkel, J. M., Wallace, K., Eisenbrey, J. R. Contrast-Enhanced Subharmonic Aided Pressure Estimation (SHAPE) Using Ultrasound Imaging with a Focus on Identifying Portal Hypertension. J. Vis. Exp. (166), e62050, doi:10.3791/62050 (2020).

View Video