Summary

マイクロマシンマイクロ流体プラットフォームにおける簡単な3次元スキンオンチップモデルの生成

Published: May 17, 2021
doi:

Summary

ここでは、マイクロマシンマイクロ流体プラットフォームを用いて、3次元の簡易および未分化皮膚モデルを生成するプロトコルを提示する。平行流アプローチは上の上の上皮細胞の播種のための真皮のコンパートメントの その場の 堆積を可能にし、すべてシリンジポンプによって制御される。

Abstract

この研究は、複雑な多層組織を生成する可能性を持つ新しい、費用対効果の高い、信頼性の高いマイクロ流体プラットフォームを提示します。概念実証として、真皮(間質)および表皮(上皮)コンパートメントを含む、簡素で未分化のヒト皮膚がモデル化されている。これを達成するために、2つのチャンバーに分かれた汎用性と堅牢なビニール系デバイスが開発され、高価で特殊な機器の使用や、小型の疎水性分子およびタンパク質の吸収など、生物医学の用途に適したポリジメチルシロキサン(PDMS)に基づくマイクロ流体デバイスに存在する欠点の一部を克服しました。さらに、平行流に基づく新しい方法が開発され、真皮および表皮コンパートメントの両方の イン・ザ・ポジション 堆積が可能となる。皮膚構築物は、ヒト原発性線維芽細胞を含むフィブリンマトリックスと、上に播種された不死化角化ケラチノサイトの単層から構成され、その後、動的培養条件下で維持される。この新しいマイクロ流体プラットフォームは、ヒトの皮膚疾患をモデル化し、他の複雑な組織を生成する方法を推定する可能性を開きます。

Introduction

近年、化粧品および医薬品1の毒性分析のためのヒト皮膚モデルの開発・生産に向けた進歩が見られている。医薬品およびスキンケア産業の研究者は、動物を使用してきました, マウスは最も一般的です, 自社製品をテストするために2,3,4,5.しかし、動物の試験製品は、ヒトにおける反応を予測するとは限らず、しばしばヒトにおける薬物不全または副作用を引き起こし、その結果経済的損失5,6に至る。英国は、1998年に化粧品検査のための動物の使用を禁止した最初の国でした。その後、2013年に、EUは動物の化粧品の試験と承認を禁止しました (EU化粧品規則第1223/2009)7.

この禁止は、米国の「人道的化粧品法」など他の国々でも検討されています倫理的な懸念に加えて、動物と人間の皮膚の解剖学的な違いは、動物のテストに時間がかかり、高価で、しばしば効果がありません。さらに、世界 のインビトロ 毒物学の検査市場規模は、20259年までに269億8000万米ドルに達すると予想されています。これらの理由から、動物を使用せずに化粧品や薬物の安全性と毒性効果のテストを可能にする、バイオエンジニアリングされたヒト皮膚モデルなどの インビトロ 研究のための新しい方法と代替案を開発する必要があります。

市販の2種類、インビトロ、ヒトの皮膚モデルがあります。第1のタイプは、異なる材料に播種された分化角化細胞の複数の層を含む層状表皮等価物で構成される。そのうちのいくつかは経済協力開発機構(OECD)によって承認され、エピダームやSkinEthic10、11、12などの皮膚腐食および刺激試験のための(欧州代替方法検証センター(ECVAM)によって検証されています。第2のタイプは、T-SkinやEpiDerm-FTなどの線維芽細胞を含む3次元(3D)足場に播種されたヒトケラチノサイトの層を持つフルスキン同等物である。しかし、これらのモデルは静的な条件下で培養されるため、ヒトの生理学的状態を正確に表すことができません。

最近の関心は、動的灌流13、14、15、16、17、18、19の細胞培養挿入(CCI)フォーマットでin vitro 3Dスキンモデルを生成することに焦点当てています。しかし、これらのシステムは、現場での古典的な定義に従って、マイクロ流体スキンオンチップとして厳密な感覚とは考えられません。Ingberの臓器オンチップの定義は、器官がマイクロ流体チャネルの中に配置されなければならないと述べています。スキンオンチップは、これまでのところ、多孔質膜22、23によって分離された単一細胞層および/または真皮細胞層として、ほとんどが単純な上皮をモデル化してきた。マイクロ流体系16,24では皮膚をモデル化する進歩がいくつかあったが、現在のところ、Ingberの定義に合った臓器オンチップシステムを示す文献はなく、その場で多層皮膚を産生することができ、上皮成分と間質成分の両方を含む。

この研究では、スキンオンチップアプリケーション用の新しい、費用対効果の高い、堅牢な、ビニールベースのマイクロ流体プラットフォームが発表されています。このプラットフォームは、PDMS25の制限の一部を克服し、デバイスのレイアウトにおける柔軟性と汎用性の向上と同様に、製造プロセスにおいてよりシンプルさを提供するマイクロ加工によって製造された。シリンジポンプで制御された平行流を通して簡単な皮膚構造を導入する方法も設計されました。平行流は非常に異なった粘着性を持つ2つの液体(この場合は緩衝液およびフィブリンプレゲル)が互いに混合されることなくチャネルを通して浸透することを可能にする。概念実証として、真皮を模したフィブリンマトリックスに埋め込まれた線維芽細胞を含む真皮構造をデバイスに導入し、その上にケラチノサイトの単層をロードして未分化表皮をエミュレートした。真皮コンパートメントの高さは流量を変更することによって変調することができる。この研究の主な目新しさは、前に説明したモデル22、26、27、28、29と比較して、マイクロ流体によるマイクロチャンバー内の3D構造の開発である。この記事では、未分化肌を単純化したものの、長期目標は、完全に差別化された皮膚構造を生成し、特徴付け、薬物および化粧品検査目的の生存率と機能性を実証することです。

Protocol

1. チップ設計とマイクロマシニングパラメータ FreeCADオープンソース設計ソフトウェアを使用してマイクロ流体チップ層を設計します。チャネルの寸法については 、表 1 を参照してください。設計に直径2.54mmの穴を4つ含めて、正しいレイヤーの重ね合わせにカスタムメイドのアライナを使用します。 <table border="1" fo:keep-together.within-page="1" fo:keep-with-next.within-page="alw…

Representative Results

設計されたチップは、下のチャンバからの成長促進分子の通過を可能にすることによって細胞の成長を可能にする5μmの細孔サイズPC膜によって分離された2つの流体室から構成される。上のチャンバは組織構築物を保持し、この場合、hFBを含むフィブリンヒドロゲル上のhKCsの単層である。 チャネルの高さは、各チャンネルに追加される粘着シートの数によって決まります…

Discussion

この方法を開発する動機は、皮膚疾患をモデル化し、ハイスループットプラットフォームで新しい革新的な治療法の効果を研究したいという願望でした。現在までに、この研究室は、手動で、または3Dバイオプリンティング技術の助けを借りて、繊維芽細胞を含むフィブリンゲルを細胞培養インサートプレートに播種し、その上に角化細胞を播種することによって、これらの皮膚表皮等価物?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

ハビエル・ロドリゲス博士、マリア・ルイサ・ロペス博士、カルロス・マテラン、フアン・フランシスコ・ロドリゲスの皆様に、ご意見、ご意見、ご意見、予備データをお願い申し上げます。また、セルヒオ・フェルランデス、ペドロ・エレーロス、ララ・ストルツェンブルクの貢献に感謝します。GFPラベル付きhFPとhKUについては、マルタ・ガルシア博士に感謝します。最後に、ギレルモ・ヴィズカイノとアンジェリカ・コラルの優れた技術支援を認めています。この作品は「プログラム・デ・アクティビダーデス・デ・I+Dアントル・グルポス・デ・インベスティガシオン・デ・ラ・コムニダード・デ・マドリード」、プロジェクトS2018/BAA-4480、バイオピエルテック-CMによって支えられた。この研究は、”プログラム・デ・エクセレンシア”、プロジェクトEPUC3M03、CAMによってもサポートされました。コンセヘリア・デ・エドゥカシオン・エ・インベスティガシオン

Materials

Amchafibrin Rottafarm Tranexamic acid
Antibiotic/antimycotic Thermo Scientific HyClone
Calcium chloride Sigma Aldrich
Culture plates Fisher
DMEM Invitrogen Life Technologies
Double-sided tape vynil ATP Adhesive Systems GM 107CC, 12 µm thick
Edge plotter Brother Scanncut CM900
FBS Thermo Scientific HyClone
Fibrinogen Sigma Aldrich Extracted from human plasma
Glass slide Thermo Scientific
GFP-Human dermal fibroblasts Primary. Gift from Dr. Marta García
H2B-GFP-HaCaT cell line ATCC Immortalized keratinocytes. Gift from Dr. Marta García
Live/dead kit Invitrogen
PBS Sigma Aldrich
Polycarbonate membrane Merk TM 5 µm pore size
Polydimethylsiloxane Dow Corning Sylgard 184
Sodium chloride Sigma Aldrich
Syringes Terumo 5 mL
Thrombin Sigma Aldrich 10 NIH/vial
Transparent adhesive vinyl Mactac JT 8500 CG-RT, 95 µm thick
Trypsin/EDTA Sigma Aldrich
Tubing IDEX Teflon, 1/16” OD, 0.020” ID

References

  1. McNamee, P., et al. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: Eye irritation. Regulatory Toxicology and Pharmacology. 54 (2), 197-209 (2009).
  2. Mathes, S. H., Ruffner, H., Graf-Hausner, U. The use of skin models in drug development. Advanced Drug Delivery Reviews. 69-70, 81-102 (2014).
  3. Abd, E., et al. Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications. 8, 163-176 (2016).
  4. Flaten, G. E., et al. In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences. 75, 10-24 (2015).
  5. Avci, P., et al. Animal models of skin disease for drug discovery. Expert Opinion on Drug Discovery. 8 (3), 331-355 (2014).
  6. Mak, I. W., Evaniew, N., Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. American Journal of Translational Research. 6 (2), 114-118 (2014).
  7. Pronko, P. P., VanRompay, P. A., Zhang, Z., Nees, J. A. Pronko et al. Reply. Physical Review Letters. 86 (7-12), 1387 (2001).
  8. H.R.2858 – Humane Cosmetics Act. 114th Congress Available from: https://congress.gov/bill/114th-congress/house-bill/2858 (2016)
  9. . Global in-vitro toxicology testing market report: size, share & trends analysis 2014-2015 Available from: https://www.prnewswire.com/news-releases/global-in-vitro-toxicology-testing-market-report-size-share–trends-analysis-2014-2025-300704958.html (2018)
  10. Zhang, Z., Michniak-Kohn, B. B. Tissue engineered human skin equivalents. Pharmaceutics. 4 (1), 26-41 (2012).
  11. OECD. In vitro skin corrosion: reconstructed human epidermis (RhE) test method. Test Guideline No.431. OECD Guideline for Testing of Chemicals. , (2019).
  12. Almeida, A., Sarmento, B., Rodrigues, F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. International Journal of Pharmaceutics. 519 (1-2), 178-185 (2017).
  13. vanden Broek, L. J., Bergers, L. I. J. C., Reijnders, C. M. A., Gibbs, S. Progress and future Prospectives in Skin-on-Chip Development with Emphasis on the use of Different Cell Types and Technical Challenges. Stem Cell Reviews and Reports. 13 (3), 418-429 (2017).
  14. Ataç, B., et al. Skin and hair on-a-chip: In vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab on a Chip. 13 (18), 3555-3561 (2013).
  15. Abaci, H. E., Gledhill, K., Guo, Z., Christiano, A. M., Shuler, M. L. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab on a Chip. 15 (3), 882-888 (2015).
  16. Wu, R., et al. Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Materials Today. 21 (4), 326-340 (2017).
  17. Materne, E. -. M., et al. The multi-organ chip – a microfluidic platform for long-term multi-tissue coculture. Journal of Visualized Experiments: JoVE. (98), e52526 (2015).
  18. Schimek, K., et al. Bioengineering of a full-thickness skin equivalent in a 96-well insert format for substance permeation studies and organ-on-a-chip applications. 생체공학. 5 (2), 43 (2018).
  19. Alberti, M., et al. Multi-chamber microfluidic platform for high-precision skin permeation testing. Lab on a Chip. 17, 1625-1634 (2017).
  20. Bhatia, S. N., Ingber, D. E. Microfluidic organs-on-chips. Nature BIotechnology. 32 (8), 760-772 (2014).
  21. Huh, D., Hamilton, G. A., Ingber, D. E. From 3D cell culture to organs-on-chips. Trends in Cell Biology. 21 (12), 745-754 (2011).
  22. Wufuer, M., et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Scientific Reports. 6, 37471 (2016).
  23. Ramadana, Q., Ting, F. C. W. In vitro micro-physiological immune-competent model of the human skin. Lab on a Chip. 16, 1899-1908 (2016).
  24. Kim, K., Jeon, H. M., Choi, K. C., Sung, G. Y. Testing the effectiveness of Curcuma longa leaf extract on a skin equivalent using a pumpless skin-on-a-chip model. International Journal of Molecular Sciences. 21 (11), 3898 (2020).
  25. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 63, 218-231 (2015).
  26. Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  27. Huh, D. A human disease model of drug toxicity – induced pulmonary edema in a lung-on-a-chip microdevice. Scientific Translational Medicine. 4 (159), (2012).
  28. Beckwitt, C. H., et al. Liver ‘ organ on a chip ‘. Experimental Cell Research. 363 (1), 15-25 (2018).
  29. Poceviciute, R., Ismagilov, R. F. Human-gut-microbiome on a chip. Nature Biomedical Engineering. 3 (7), 500-501 (2019).
  30. Kanda, T., Sullivan, K. F., Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology. 8 (7), 377-385 (1998).
  31. Escámez, M. J., et al. Assessment of optimal virus-mediated growth factor gene delivery for human cutaneous wound healing enhancement. Journal of Investigative Dermatology. 128 (6), 1565-1575 (2008).
  32. Llames, S. G., et al. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation. 77 (3), 350-355 (2004).
  33. Llames, S., et al. Clinical results of an autologous engineered skin. Cell Tissue Bank. 7 (1), 47-53 (2006).
  34. Cubo, N., Garcia, M., del Cañizo, J. F., Velasco, D., Jorcano, J. L. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 9 (1), 015006 (2016).
  35. Mori, N., Morimoto, Y., Takeuchi, S. Skin integrated with perfusable vascular channels on a chip. Biomaterials. 116, 48-56 (2017).
  36. Kim, H. J., Li, H., Collins, J. J., Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proceedings of the National Academy of Sciences of the United States of America. 113 (1), 7-15 (2016).
  37. Shah, P., et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nature Communications. 7, 11535 (2016).
  38. Marx, U., et al. Human-on-a-chip’ developments: A translational cuttingedge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man. Alternatives to Laboratory Animals. 40 (5), 235-257 (2012).
  39. Bein, A., et al. Microfluidic organ-on-a-chip models of human intestine. Cellular and Molecular Gastroenterology and Hepatology. 5 (4), 659-668 (2018).
  40. Bennet, D., Estlack, Z., Reid, T., Kim, J. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab on a Chip. 18, 1539-1551 (2018).
  41. Kim, H. J., Huh, D., Hamilton, G., Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a chip. 12, 2165-2174 (2012).
  42. Kim, H. J., Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integrative Biology. 5 (9), 1130-1140 (2013).
  43. O’Neill, A. T., Monteiro-Riviere, N. A., Walker, G. M. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology. 56 (3), 197-207 (2008).
  44. Ren, K., Chen, Y., Wu, H. New materials for microfluidics in biology. Current Opinion in Biotechnology. 25, 78-85 (2014).

Play Video

Cite This Article
Risueño, I., Valencia, L., Holgado, M., Jorcano, J. L., Velasco, D. Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform. J. Vis. Exp. (171), e62353, doi:10.3791/62353 (2021).

View Video