Summary

从诱导多能干细胞生成3D全肺类器官,用于模拟肺发育生物学和疾病

Published: April 12, 2021
doi:

Summary

本文描述了诱导多能干细胞与含有近端和远端上皮肺细胞以及间充质的三维全肺类器官的逐步定向分化。

Abstract

由于缺乏生物学相关的 体外 模型系统,人类肺部发育和疾病一直难以研究。人类诱导多能干细胞(hiPSCs)可以逐步分化成3D多细胞肺类器官,由上皮细胞群和间充质细胞群组成。我们通过暂时引入各种生长因子和小分子来概括胚胎发育线索,以有效地产生明确的内胚层,前颈内胚层,以及随后的肺祖细胞。然后将这些细胞嵌入生长因子减少(GFR)基底膜基质培养基中,使它们能够响应外部生长因子自发发育成3D肺类器官。这些全肺类器官(WLO)在暴露于地塞米松,环AMP和异丁基黄嘌呤后经历早期肺部发育阶段,包括分支形态发生和成熟。WLO具有表达标志物KRT5(基底),SCGB3A2(俱乐部)和MUC5AC(杯)的气道上皮细胞以及表达HOPX(肺泡I型)和SP-C(肺泡II型)的肺泡上皮细胞。还存在间充质细胞,包括平滑肌肌动蛋白(SMA)和血小板衍生的生长因子受体A(PDGFRα)。iPSC衍生的WLO可以在3D培养条件下维持数月,并且可以分类为表面标记物以纯化特定的细胞群。iPSC衍生的WLO也可用于研究人肺发育,包括肺上皮和间充质之间的信号传导,模拟人肺细胞功能和发育的基因突变,并确定感染因子的细胞毒性。

Introduction

肺是一个复杂的、异质的、动态的器官,在六个不同的阶段发育 – 胚胎期、假性腺体、小管性、囊状、肺泡和微血管成熟12。后两个阶段发生在人类发育的前后阶段,而前四个阶段只发生在胎儿发育过程中,除非发生早产3。胚胎期从内胚层开始,以气管和肺芽的萌芽结束。肺部发育部分通过上皮细胞和间充质细胞之间的信号传导发生4。这些相互作用导致肺分支,增殖,细胞命运决定和发育中肺的细胞分化。肺分为传导区(气管到末端细支气管)和呼吸区(呼吸道细支气管到肺泡)。每个区域包含独特的上皮细胞类型;包括传导气道中的基底细胞、分泌细胞、纤毛细胞、刷状细胞、神经内分泌细胞和离子细胞5,其次是呼吸道上皮中的肺泡 I 型和 II 型细胞6。关于各种细胞类型的发育和对损伤的反应,还有很多未知数。iPSC衍生的肺类器官模型能够研究驱动人类肺部发育的机制,基因突变对肺功能的影响,以及上皮和间充质对感染因子的反应,而无需原发性人体肺组织。

与胚胎分化各个阶段相对应的标志物包括用于确定性内胚层 (DE)7 的 CXCR4、cKit、FOXA2 和 SOX17、用于前前肠内胚层 (AFE)8 的 FOXA2、TBX1 和 SOX2,以及用于早期肺祖细胞的 NKX2-19。在胚胎肺发育中,前肠分为背食道和腹侧气管。右肺和左肺的芽表现为气管芽周围的两个独立的外垂10。在分支形态发生过程中,上皮周围的间充质产生弹性组织、平滑肌、软骨和脉管系统11。上皮和间充质之间的相互作用对于正常的肺部发育至关重要。这包括间充质分泌的FGF1012和上皮产生的SHH13

在这里,我们描述了一种将hiPSCs定向分化为三维(3D)全肺类器官(WLO)的方案。虽然有类似的方法通过LPC阶段的分选分离肺祖细胞,以制造肺泡样1415 (远端)类器官或气道16 (近端)类器官,或产生腹侧前肠球状体,使人肺类器官表达肺泡细胞和间充质标志物以及芽尖祖器官17,这种方法的优势在于包括肺上皮细胞和间充质细胞类型,以在 体外模式和协调肺分支形态发生,成熟和扩增。

该协议使用小分子和生长因子来指导多能干细胞通过确定性内胚层,前叶内胚层和肺祖细胞的分化。然后,这些细胞通过重要的发育步骤(包括分支和成熟)被诱导成3D全肺类器官。分化方案的摘要如图 1a 所示,内胚层和类器官分化的代表性明场图像如图 1b所示图1c、d 显示了完成分化后内胚层分化的基因表达细节以及肺上皮细胞近端和远端群体的基因表达。

Protocol

该研究方案由UCSD人类研究保护计划机构审查委员会批准(181180)。 1. 诱导多能干细胞的确定性内胚层诱导(第1-3天) 使用前30分钟在冰上缓慢解冻生长因子减少(GFR)基底膜(BM)基质培养基。在冷的DMEM/F12混合物中,以1∶1的比例稀释GFR BM基质培养基,使其构成该培养基的50%。使用前将 P1000 移液器吸头放入冰箱中冷藏。 用在冰冷的DMEM / F12中制备的500μL50%GFR?…

Representative Results

电镀后24小时,第1天,iPSCs应为50%-90%汇合。在第 2 天,DE 应为 90%-95% 汇合。在DE诱导期间,通常在第4天观察到显着的细胞死亡,但附着的细胞将保留紧凑的鹅卵石形态(图2b)。如果大多数贴壁细胞分离,则停止分化,并考虑将活性素A的DE培养基暴露时间缩短6-12小时。在AFE诱导期间,细胞死亡是最小的,细胞保持贴壁,但会显得更小,更异质。只有当双阳性SOX2和FOXA2的产量>…

Discussion

3D全肺类器官(WLO)的成功分化依赖于多步骤,6周的方案,并注重细节,包括暴露于生长因子和小分子的时间,传代后的细胞密度以及hiPSCs的质量。故障排除请参见 表2。hiPSCs 应约为 70%-80% 汇合,解离前自发分化小于 5%。该协议要求”mTeSR+”介质;然而,普通的”mTeSR”培养基也被使用,结果相当,而且价格更便宜。对于细胞外基质,我们使用GFR基底膜基质培养基质。我们使用ReLesR(见 <stron…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了加州再生医学研究所(CIRM)(DISC2-COVID19-12022)的支持。

Materials

Cell Culture
12 well plates Corning 3512
12-well inserts, 0.4um, translucent VWR 10769-208
2-mercaptoethanol Sigma-Aldrich M3148
Accutase Innovative Cell Tech AT104
ascorbic acid Sigma A4544
B27 without retinoic acid ThermoFisher 12587010
Bovine serum albumin (BSA) Fraction V, 7.5% solution Gibco 15260-037
Dispase StemCellTech 7913
DMEM/F12 Gibco 10565042
FBS Gibco 10082139
Glutamax Life Technologies 35050061
Ham’s F12 Invitrogen 11765-054
HEPES Gibco 15630-080
Iscove’s Modified Dulbecco’s Medium (IMDM) + Glutamax Invitrogen 31980030
Knockout Serum Replacement (KSR) Life Technologies 10828028
Matrigel Corning 354230
Monothioglycerol Sigma M6145
mTeSR plus Kit (10/case) Stem Cell Tech 5825
N2 ThermoFisher 17502048
NEAA Life Technologies 11140050
Pen/strep Lonza 17-602F
ReleSR Stem Cell Tech 5872
RPMI1640 + Glutamax Life Technologies 12633012
TrypLE Gibco 12605-028
Y-27632 (Rock Inhibitor) R&D Systems 1254/1
Growth Factors/Small Molecules
Activin A R&D Systems 338-AC
All-trans retinoic acid (RA) Sigma-Aldrich R2625
BMP4 R&D Systems 314-BP/CF
Br-cAMP Sigma-Aldrich B5386
CHIR99021 Abcam ab120890
Dexamethasone Sigma-Aldrich D4902
Dorsomorphin R&D Systems 3093
EGF R&D Systems 236-EG
FGF10 R&D Systems 345-FG/CF
FGF7 R&D Systems 251-KG/CF
IBMX (3-Isobtyl-1-methylxanthine) Sigma-Aldrich I5879
SB431542 R&D Systems 1614
VEGF/PIGF R&D Systems 297-VP/CF
Primary antibodies Dilution rate
CXCR4-PE R&D Systems FAB170P 1:200 (F)
HOPX Santa Cruz Biotech sc-398703 0.180555556
HTII-280 Terrace Biotech TB-27AHT2-280 0.145833333
KRT5 Abcam ab52635 0.180555556
NKX2-1 Abcam ab76013 0.25
NKX2-1-APC LS-BIO LS-C264437 1:1000 (F)
proSPC Abcam ab40871 0.215277778
SCGB3A2 Abcam ab181853 0.25
SOX2 Invitrogen MA1-014 0.180555556
SOX9 R&D Systems AF3075 0.180555556
SPB (mature) 7 Hills 48604 1: 1500 (F) 1:500 (W)a
SPC (mature) LS Bio LS-B9161 1:100 (F); 1:500 (W) a

References

  1. Ten Have-Opbroek, A. A. Lung development in the mouse embryo. Experimental Lung Research. 17 (2), 111-130 (1991).
  2. Perl, A. K., Whitsett, J. A. Molecular mechanisms controlling lung morphogenesis. Clinical Genetics. 56 (1), 14-27 (1999).
  3. Leibel, S., Post, M. Endogenous and exogenous stem/progenitor cells in the lung and their role in the pathogenesis and treatment of pediatric lung disease. Frontiers in Pediatrics. 4, 36 (2016).
  4. Hines, E. A., Sun, X. Tissue crosstalk in lung development. Journal of Cellular Biochemistry. 115 (9), 1469-1477 (2014).
  5. Montoro, D. T., et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 560 (7718), 319-324 (2018).
  6. Barkauskas, C. E., et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation. 123 (7), 3025-3036 (2013).
  7. D’Amour, K. A., et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology. 23 (12), 1534-1541 (2005).
  8. Green, M. D., et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nature Biotechnology. 29 (3), 267-272 (2011).
  9. Ikeda, K., Shaw-White, J. R., Wert, S. E., Whitsett, J. A. Hepatocyte nuclear factor 3 activates transcription of thyroid transcription factor 1 in respiratory epithelial cells. Molecular Cell Biology. 16 (7), 3626-3636 (1996).
  10. Schittny, J. C. Development of the lung. Cell and Tissue Research. 367 (3), 427-444 (2017).
  11. Mecham, R. P. Elastin in lung development and disease pathogenesis. Matrix Biology: Journal of the International Society for Matrix Biology. 73, 6-20 (2018).
  12. Bellusci, S., Grindley, J., Emoto, H., Itoh, N., Hogan, B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 124 (23), 4867-4878 (1997).
  13. Bellusci, S., et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development. 124 (1), 53-63 (1997).
  14. Yamamoto, Y., et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nature Methods. 14 (11), 1097-1106 (2017).
  15. Hawkins, F., et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. The Journal of Clinical Investigation. 127 (6), 2277-2294 (2017).
  16. McCauley, K. B., Hawkins, F., Kotton, D. N. Derivation of epithelial-only airway organoids from human pluripotent stem cells. Current Protocols in Stem Cell Biology. 45 (1), 51 (2018).
  17. Miller, A. J., et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols. 14 (2), 518-540 (2019).
  18. Gotoh, S., et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports. 3 (3), 394-403 (2014).
  19. Huang, S. X., et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology. 32 (1), 84-91 (2014).
  20. Endale, M., et al. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development. 발생학. 425 (2), 161-175 (2017).
  21. Fatehullah, A., Tan, S. H., Barker, N. Organoids as an in vitro model of human development and disease. Nature Cell Biology. 18 (3), 246-254 (2016).
  22. Nikolić, M. Z., Rawlins, E. L. Lung organoids and their use to study cell-cell interaction. Current Pathobiology Reports. 5 (2), 223-231 (2017).
  23. Calvert, B. A., Ryan Firth, A. L. Application of iPSC to modelling of respiratory diseases. Advances on Experimental Medicine and Biology. 1237, 1-16 (2020).
  24. McCulley, D., Wienhold, M., Sun, X. The pulmonary mesenchyme directs lung development. Current Opinion in Genetics and Development. 32, 98-105 (2015).
  25. Blume, C., et al. Cellular crosstalk between airway epithelial and endothelial cells regulates barrier functions during exposure to double-stranded RNA. Immunity, Inflammation and Disease. 5 (1), 45-56 (2017).
  26. Leibel, S. L., et al. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. Scientific Reports. 9 (1), 13450 (2019).
  27. Rock, J. R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 106 (31), 12771-12775 (2009).
  28. Gonzalez, R. F., Allen, L., Gonzales, L., Ballard, P. L., Dobbs, L. G. HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 58 (10), 891-901 (2010).
  29. McCauley, K. B., et al. Single-cell transcriptomic profiling of pluripotent stem cell-derived SCGB3A2+ airway epithelium. Stem Cell Reports. 10 (5), 1579-1595 (2018).
  30. Sekine, K., et al. Robust detection of undifferentiated iPSC among differentiated cells. Scientific Reports. 10 (1), 10293 (2020).
  31. Jacquet, L., et al. Strategy for the creation of clinical grade hESC line banks that HLA-match a target population. EMBO Molecular Medicine. 5 (1), 10-17 (2013).
  32. Mattapally, S., et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. Journal of the American Heart Association. 7 (23), 010239 (2018).
check_url/kr/62456?article_type=t

Play Video

Cite This Article
Leibel, S. L., McVicar, R. N., Winquist, A. M., Snyder, E. Y. Generation of 3D Whole Lung Organoids from Induced Pluripotent Stem Cells for Modeling Lung Developmental Biology and Disease. J. Vis. Exp. (170), e62456, doi:10.3791/62456 (2021).

View Video