Summary

一种测定谷物和豆类游离可溶性酚酸组成和抗氧化能力的广义方法

Published: June 10, 2022
doi:

Summary

酚酸是存在于全谷物中的重要植物化学物质。它们具有生物活性特性,如抗氧化保护功能。这项工作旨在报告HPLC鉴定的广义方法,总酚含量估计以及谷物和豆类中酚酸抗氧化能力的测定。

Abstract

酚酸是一类同时具有酚基和羧基的有机化合物。它们存在于谷物中,并集中在谷物的麸皮或豆类的种皮中。它们具有抗氧化特性,近年来引起了人们对其潜在的抗氧化保护健康功能的研究兴趣。这项工作提出了一种从全谷物中提取游离可溶性酚酸的广义方法,并分析了它们的抗氧化能力。使用五个全谷物样本,包括两种谷物(小麦和黄玉米)和三种豆类(豇豆,芸豆和大豆)。将谷物碾磨成面粉,并使用甲醇水溶液提取其游离可溶性酚酸。然后使用高压液相色谱仪(HPLC)鉴定化合物。Folin-Ciocalteu方法测定其总酚含量,同时使用DPPH自由基清除能力,Trolox等效抗氧化能力(TEAC)和氧自由基吸收能力(ORAC)测定测定其抗氧化能力。鉴定出的酚酸包括香草酸、咖啡酸、香豆酸和阿魏酸。香草酸仅在豇豆中鉴定,而咖啡酸仅在芸豆中鉴定。在黄玉米、豇豆和大豆中鉴定出对香豆酸,而在所有样品中鉴定出阿魏酸。阿魏酸是确定的主要酚酸。样品中酚酸的总浓度按以下顺序下降:大豆>豇豆>黄玉米=芸豆>小麦。总抗氧化能力(DPPH,TEAC和ORAC测定值的总和)下降如下:大豆>芸豆>黄玉米=豇豆>小麦。这项研究得出结论,HPLC分析以及DPPH,TEAC和ORAC测定提供了有关全谷物酚酸组成和抗氧化特性的有用信息。

Introduction

酚酸是植物中研究的最重要植物化学物质之一,因为它们在植物防御食草动物和真菌感染以及维持植物组织中的结构支撑和完整性方面发挥着至关重要的作用12。它们在谷物的麸皮和豆类的种皮中含量丰富3.在结构上,它们分为两组:羟基苯甲酸(图1)和羟基肉桂酸(图2)。谷物和豆类中常见的羟基苯甲酸包括没食子酸、 羟基苯甲酸、2,4-二羟基苯甲酸、原儿茶酸、香草酸和丁香酸,而常见的羟基肉桂酸包括咖啡酸、 香豆酸、阿魏酸和芥子酸3。酚酸还具有抗氧化特性,因为它们能够清除导致脂肪氧化酸败的自由基,并在生理系统中启动和传播自由基诱导的氧化应激45。由于作为抗氧化剂的这种重要的生理作用,它们是最近研究的主题。这是因为当作为植物性食物的成分食用时,它们可以发挥抗氧化保护作用。

谷物和谷物制品是全世界人类和动物的主要碳水化合物食物来源6.谷物包括小麦,大米,玉米(玉米),大麦,小黑麦,小米和高粱。其中,玉米是利用量最大的,2019/2020年全球利用率估计为11.357亿吨,其次是小麦,同期全球估计利用率为7.575亿吨。谷物食品是消费者的重要能量来源,因为它们是碳水化合物的丰富来源。它们还提供一些蛋白质,脂肪,纤维,维生素和矿物质6。除了它们的营养价值外,谷物还是植物化学抗氧化剂的良好来源,特别是酚酸,它们具有保护生理系统免受自由基诱导的氧化损伤的潜力3。豆类也是营养物质的良好来源,蛋白质含量通常高于谷物。它们还含有维生素和矿物质,用于制备各种食物8。此外,豆类是各种植物化学抗氧化剂的良好来源,包括酚酸,类黄酮,花青素和原花青素910。不同品种的谷物和豆类可能具有不同的酚酸组成。因此,有必要研究谷物和豆类的酚酸组成及其品种,以了解它们在酚类抗氧化剂方面的潜在健康益处。

已经报道了许多用于测量谷物和豆类谷物中酚酸含量并确定其抗氧化活性的测定方法。全谷物酚酸最常用的分析方法是分光光度法和液相色谱法11。这项工作的目的是展示一种用于测定游离可溶性酚酸组成的广义高压液相色谱方法,以及用于测定某些全谷物谷物和豆类的总酚含量和抗氧化能力的分光光度法。

Protocol

1. 样品类型 本研究使用五个全谷物样品,包括两种谷物(例如硬粒小麦和黄玉米)和三种豆类(例如黑眼豇豆,大豆和红芸豆)。 使用咖啡研磨机将50克每种谷物一式三份研磨成面粉,并通过500μm筛子。 将它们储存在-20°C。 2. 样品制备 以干物质含量的测定和干重表达为基础注:根据AOAC (2000)<sup …

Representative Results

表2 显示了在谷物和豆类谷物中鉴定的酚酸。根据现有的正品标准,在样品中鉴定出四种酚酸,它们是:香草酸,咖啡酸, 对香豆酸和阿魏酸。香草酸是一种羟基苯甲酸,而其他三种是羟基肉桂酸。香草酸仅在黑眼豇豆中鉴定,而咖啡酸仅在芸豆中鉴定。 在黄玉米,豇豆豆和大豆中鉴定出对香豆酸。按干重计算,其浓度范围在7.57至12.48微克/克面粉之间,黄玉米的最低值…

Discussion

全谷物被选为具有代表性的谷物和豆类,在世界范围内具有广泛的食品应用。虽然每种谷物的品种之间可能存在差异,但本研究的重点是展示一种用于全谷物的游离酚酸提取和分析的广义方法。通过大幅减少样品和溶剂的量来修改提取方法,以减少进行此类实验时释放到环境中的化学物质的量。这种改性还可以从毫克量的全谷物中提取酚醛。

HPLC分析产生样品中组成酚酸的色?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Alison Ser女士和Hannah Oduro-Obeng女士的技术支持,以及Janice Fajardo女士和Miguel del Rosario先生的视频编辑支持。

Materials

15 mL Falcon conical centrifuge tubes Fisher Scientific 05-527-90
2 mL Amber glass ID Surestop vial Thermo Scientific C5000-2W
2 mL Amber microcentrifuge tubes VWR 20170-084
2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) Sigma-Aldrich 440914-100G
2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (C18H18N4O6S4) ≥98%, Sigma Aldrich A1888-2G
2,2-Diphenyl-1pikrylhydrazyl (DPPH) (C18H12N5O6) Sigma Aldrich D913-2
6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (C14H18O4), ≥98% Fluka Chemika 56510
9 mm Autosampler Vial Screw Thread Caps Thermo Scientific 60180-670
96 well flat bottom plates Fisher Scientific 12565501
Agilent BioTek ELx800 microplate reader Fisher Scientific BT-ELX800NB
Agilent BioTek Precision 2000 96/384 Automated Microplate Pipetting System Fisher Scientific N/A
Agilent BioTek FLx800 Microplate Fluorescence Reader Fisher Scientific N/A
Analytical balance SI-114 Denver Instrument SI-114.1
Autosampler, Waters 717 Plus Waters WAT078900
BD 3 mL syringe Luer-Lok Tip BD 309657
Bransonic ultrasonic cleaner, Branson 5510 Millipore Sigma Z245143
Corning LSE Vortex Mixer Corning 6775
Durapore Filter (0.45 µm PVDF Membrane) Merck Millipore Ltd HVLP04700 
Durapore Membrane Filters (0.45 µm HV) Merck Millipore Ltd HVHP04700
Eppendorf Research plus, 0.5-10 µL Eppendorf 3123000020
Eppendorf Research plus, 0.5-5 mL Eppendorf 3123000071
Eppendorf Research plus, 100-1000 µL Eppendorf 3123000063
Eppendorf Research plus, 10-100 µL Eppendorf 3123000047
Ethyl acetate, HPLC grade Fisher Chemical E195-4
Ferulic acid standard Sigma Aldrich 128708-5G
Fluorescein Fisher Scientific AC119245000
Folin & Ciocalteu phenol reagent Sigma Aldrich F9252
Formic acid, 99% Acros Organics, Janssen Pharmaceuticalaan 3a 27048-0010
Gallic acid standard Sigma G7384
High performance liquid chromatograph (HPLC), Waters 2695 Waters 960402
Methanol, HPLC grade Fisher Chemical A452-4
Micro pipet tips, 0.5-10 µL Fisherbrand 21-197-2F
Microcentrifuge Sorvall Legend Micro 21 centrifuge Thermo Scientific 75002435
Multichannel micropipette, Proline Plus, 30-300 µL Sartorius 728240
Photodiode array detector, Waters 2996 Waters 720000350EN
Pipet tips, 1000 µL VWR 83007-382
Pipet tips, 1-5 mL VWR 82018-840
Potassium persulfate (K2S2O8), ≥99.0% Sigma Aldrich 216224-100G
Potassium phosphate dibasic anhydrous (K2HPO4) Fisher Scientific P288-500
Potassium phosphate monobasic (KH2PO4) Fisher Scientific P285-500
PYREX 250 mL Short Neck Boiling Flask, Round Bottom Corning 4321-250
Reversed phase C18 Analytical Column (100 x 3 mm) Accucore aQ Thermo Scientific 17326-103030
Roto evaporator, IKA RV 10 IKA  0010005185
Sodium carbonate (NaCO3) anhydrous Fisher Chemical S263-1
Sodium chloride (NaCl) Mallinckrodt AR® 7581
Sodium phosphate dibasic anhydrous (Na2HPO4) Fisher Scientific BP332-500
Sodium phosphate monobasic anhydrous (NaH2PO4) Fisher bioreagents BP329-500
Standardization pipet tips 0-200µL Fisherbrand 02-681-134
Syringe Driven Filter unit (0.22 µm)  Millex®-GV SLGVR04NL
Target micro-serts vial insert (400 µL) Thermo Scientific C4011-631
Ultrapure water (Direct Q-3 UV system with pump) Millipore ZRQSVP030

References

  1. Huitu, O., et al. Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Frontiers in Plant Science. 5, 478 (2014).
  2. Joshi, J. R., Burdman, S., Lipsky, A., Yariv, S., Yedidia, I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Molecular Plant Pathology. 17 (4), 487-500 (2016).
  3. Dykes, L., Rooney, L. W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. 52 (3), 105-111 (2007).
  4. Xiang, J., Apea-Bah, F. B., Ndolo, V. U., Katundu, M. C., Beta, T. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chemistry. 275, 361-368 (2019).
  5. Qiu, Y., Liu, Q., Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chemistry. 121 (1), 140-147 (2010).
  6. Beverly, R. L., Motarjemi, Y. . Encyclopedia of Food Safety. 3, 309-314 (2014).
  7. FAO. Food Outlook – Biannual report on global food markets. Food and Agriculture Organization. , (2020).
  8. Erbersdobler, H. F., Barth, C. A., Jahreis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahrungs Umschau. 64 (9), 134-139 (2017).
  9. Dueñas, M., Hernández, T., Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chemistry. 98 (1), 95-103 (2006).
  10. Khang, D. T., Dung, T. N., Elzaawely, A. A., Xuan, T. D. Phenolic profiles and antioxidant activity of germinated legumes. Foods. 5 (2), 27 (2016).
  11. Hefni, M. E., Amann, L. S., Witthöft, C. M. A HPLC-UV method for the quantification of phenolic acids in cereals. Food Analytical Methods. 12 (12), 2802-2812 (2019).
  12. AOAC. . Official Methods of Analysis. 17th edn. , (2000).
  13. Apea-Bah, F. B., Head, D., Scales, R., Bazylo, R., Beta, T. Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Cornus stolonifer) leaves and stems. Heliyon. 6 (10), 05158 (2020).
  14. Apea-Bah, F. B., Minnaar, A., Bester, M. J., Duodu, K. G. Sorghum-cowpea composite porridge as a functional food, Part II: Antioxidant properties as affected by simulated in vitro gastrointestinal digestion. Food Chemistry. 197, 307-315 (2016).
  15. Robbins, R. J., Bean, S. R. Development of a quantitative high-performance liquid chromatography-photodiode array detection measurement system for phenolic acids. Journal of Chromatography A. 1038 (1-2), 97-105 (2004).
  16. Singleton, V. L., Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16, 144-158 (1965).
  17. Prior, R. L., Wu, X., Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry. 53 (10), 4290-4302 (2005).
  18. Ainsworth, E. A., Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols. 2 (4), 875-877 (2007).
  19. Waterhouse, A. L. Determination of total phenolics. Current Protocols in Food Analytical Chemistry. 1, 1-8 (2002).
  20. Huang, D., Ou, B., Prior, R. L. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry. 53 (6), 1841-1856 (2005).
  21. Esterbauer, H., Wäg, G., Puhl, H. Lipid peroxidation and its role in atherosclerosis. British Medical Bulletin. 49 (3), 566-576 (1993).
  22. Esterbauer, H., Gebicki, J., Puhl, H., Jürgens, G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine. 13 (4), 341-390 (1992).
  23. Apea-Bah, F. B., Serem, J. C., Bester, M. J., Duodu, K. G. Phenolic composition and antioxidant properties of Koose, a deep-fat fried cowpea cake. Food Chemistry. 237, 247-256 (2017).

Play Video

Cite This Article
Apea-Bah, F. B., Drawbridge, P., Beta, T. A Generalized Method for Determining Free Soluble Phenolic Acid Composition and Antioxidant Capacity of Cereals and Legumes. J. Vis. Exp. (184), e62467, doi:10.3791/62467 (2022).

View Video