Summary

利用 体内 出生后电穿孔研究小脑颗粒神经元形态和突触发育

Published: June 09, 2021
doi:

Summary

在这里,我们描述了一种方法,当这些细胞细化其突触结构并形成突触以整合到整个脑回路中时,在出生后大脑发育的时间过程中可视化小鼠小脑中颗粒神经元的突触发生。

Abstract

神经元在大脑发育过程中经历其结构和功能的动态变化,以与其他细胞形成适当的连接。啮齿动物小脑是跟踪单细胞类型小脑颗粒神经元(CGN)随时间变化的发育和形态发生的理想系统。在这里,发育中的小鼠小脑中颗粒神经元祖细胞的 体内 电穿孔用于稀疏标记细胞以进行随后的形态学分析。该技术的功效体现在它能够展示CGN成熟的关键发育阶段,特别关注树突爪的形成,树突爪是这些细胞接收大部分突触输入的特殊结构。除了在整个小脑发育过程中提供CGN突触结构的快照外,该技术还可以适应以细胞自主的方式对颗粒神经元进行遗传操作,以研究任何感兴趣的基因的作用及其对CGN形态,爪发育和突触发生的影响。

Introduction

大脑发育是一个从胚胎发生到出生后生命的漫长过程。在此期间,大脑整合了内在和外在刺激的组合,这些刺激塑造了树突和轴突之间的突触连接,最终指导行为。啮齿动物小脑是研究突触如何发展的理想模型系统,因为单个神经元类型的小脑颗粒神经元(CGN)的发育可以在从祖细胞过渡到成熟神经元时进行跟踪。这部分是由于大多数小脑皮层在出生后发育,这使得出生后易于遗传操作和细胞标记1

在哺乳动物中,CGN分化始于胚胎发育结束时,当时后脑中的增殖细胞子集迁移到菱形唇上,在小脑表面形成次级生发区2,34尽管它们完全致力于颗粒神经元祖细胞(GNP)身份,但这些细胞继续在外部颗粒层(EGL)的外部增殖,直到出生后第14天(P14)。这一层的增殖导致小脑的大规模扩张,因为这些细胞只产生CGNs5。一旦新生的CGN退出EGL中的细胞周期,它们就会向内迁移到内部颗粒层(IGL),留下一个轴突,该轴突将在小脑的分子层中分叉并行进,形成平行纤维,突触到浦肯野细胞上6。这些纤维在分子层中的位置取决于细胞周期退出的时间。

首先分化的CGN将其平行纤维留向分子层的底部,而分化的CGN的轴突聚集在顶部78。一旦CGN细胞体到达IGL,它们就开始细化树突并与附近的抑制性和兴奋性神经元形成突触。CGN的成熟树枝状树表现出具有四个主要过程的刻板结构。在CGN成熟过程中,这些树突末端的结构形成一个爪子,该爪子富含突触后蛋白910。这些称为树突爪的特殊结构包含颗粒神经元上的大部分突触,对于接收来自脑桥的苔藓纤维神经支配的兴奋性输入以及来自局部高尔基体细胞的抑制性输入非常重要。一旦完全配置,CGN的突触连接允许这些细胞将输入从小脑前核中继到浦肯野细胞,浦肯野细胞从小脑皮层投射到小脑深部核。

GNPs的出生后体内电穿孔优于其他基于标记的方法,例如病毒感染和转基因小鼠系的产生,因为可以在快速的时间轴上实现所需构建体的表达,并且该方法针对少量细胞群,可用于研究细胞自主效应。该方法已在先前的研究中用于研究CGN的形态发育;然而,这些研究集中在单个时间点或短时间窗口910,111213该标记方法与图像分析相结合,以记录出生后前三周CGN分化的整个时间过程中发生的CGN形态变化。这些数据揭示了中广核树突发育的动态,这是小脑回路构建的基础。

Protocol

注意:所有程序均根据杜克大学机构动物护理和使用委员会(IACUC)批准的协议进行。 1. 体内电穿孔或 IVE 的 DNA 制备(术前 1 天) 收集以下材料:纯化的DNA(每只动物0.5-25μg),3M乙酸钠,乙醇,固绿染料,超纯蒸馏水,磷酸盐缓冲溶液(PBS)(见材料表)。注意:对于DNA,从Addgene(FUGW,https://www.addgene.org/14883/)获得在人泛素启动子下表达绿色荧光?…

Representative Results

图4:小脑发育过程中颗粒神经元形态分析。 (A) 从3DPI到14DPI(出生后年龄P10至P21)、细胞核(蓝色)和GFP(绿色)的电穿孔CGN的最大投影图像;箭头表示单个树突,比例尺为10μm。 (B)树突的平均数量。(C)从体细胞基部到枝晶尖端测量的平均枝晶长度。(…

Discussion

小脑颗粒神经元是哺乳动物大脑中最丰富的神经元,几乎占啮齿动物大脑中神经元总数的60-70%114。小脑已被广泛用于阐明细胞增殖、迁移、树突形成和突触发育的机制69,101115,161718<sup class="xref"…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH资助R01NS098804(A.E.W.),F31NS113394(U.C.)和杜克大学夏季神经科学项目(D.G.)的支持。

Materials

Betadine Purdue Production 67618-150-17
Cemented 10 µL needle Hamilton 1701SN (80008) 33 gauge, 1.27 cm (0.5 in), 4 point style
Chicken anti-GFP Millipore Sigma AB16901 Our lab uses this antibody at a 1:1000 concentration
Cotton-tip applicator
Donkey anti-chicken Cy2 Jackson ImmunoResearch 703-225-155 Our lab uses this antibody at a 1:500 concentration
Ethanol (200 proof) Koptec V1016
Electroporator ECM 830 BTX Harvard Apparatus 45-0052
Fast Green FCF Sigma F7252-5G
FUGW plasmid Addgene 14883
Glass slides VWR 48311-703 Superfrost plus
Glycerol Sigma-Aldrich G5516
Heating pad Softheat
Hoescht 33342 fluorescent dye Invitrogen 62249
Imaris Bitplane
Isoflurane Patterson Veterinary 07-893-1389
Micro cover glass VWR 48382-138
Nail polish Sally Hansen Color 109
Normal goat serum Gibco 16210064
O.C.T. embedding compound Tissue-Tek 4583
Olympus MVX10 Dissecting Scope Olympus MVX10
P200 pipette reach tip Fisherbrand 02-707-138 Used for needle spacer
Parafilm Bemis PM-996
PBS pH 7.4 (10x) Gibco 70011-044
Simple Neurite Tracer FIJI https://imagej.net/Simple_Neurite_Tracer:_Basic_
Instructions
Sucrose Sigma S0389
Surgical tools RWD Life Science Small scissors and tweezers
Triton X-100 Roche 11332481001 non-ionic detergent
Tweezertrodes BTX Harvard Apparatus 45-0489 5 mm, platinum plated tweezer-type electrodes
Ultrapure distilled water Invitrogen 10977-015
Vectashield mounting media Vectashield H1000
Vetbond tissue adhesive 3M 1469SB
Zeiss 780 Upright Confocal Zeiss 780

References

  1. Altman, J., Bayer, S. A. . Development of the cerebellar system : in relation to its evolution, structure, and functions. , (1997).
  2. Rahimi-Balaei, M., Bergen, H., Kong, J., Marzban, H. Neuronal migration during development of the cerebellum. Frontiers in Cellular Neuroscience. 12, 484 (2018).
  3. Alder, J., Cho, N. K., Hatten, M. E. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 17 (3), 389-399 (1996).
  4. Hatten, M. E., Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annual Review of Neuroscience. 18, 385-408 (1995).
  5. Ben-Arie, N., et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 390 (6656), 169-172 (1997).
  6. Borghesani, P. R., et al. BDNF stimulates migration of cerebellar granule cells. Development. 129 (6), 1435-1442 (2002).
  7. Espinosa, J. S., Luo, L. Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. Journal of Neuroscience. 28 (10), 2301-2312 (2008).
  8. Markwalter, K. H., Yang, Y., Holy, T. E., Bonni, A. Sensorimotor coding of vermal granule neurons in the developing mammalian cerebellum. Journal of Neuroscience. 39 (34), 6626-6643 (2019).
  9. Shalizi, A., et al. PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. Journal of Neuroscience. 27 (37), 10037-10046 (2007).
  10. Shalizi, A., et al. A Calcium-regulated MEF2 sumoylation switch controls poststynaptic differentiation. Science. 311 (5763), 1012-1017 (2006).
  11. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S., Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science. 303 (5660), 1026-1030 (2004).
  12. Holubowska, A., Mukherjee, C., Vadhvani, M., Stegmuller, J. Genetic manipulation of cerebellar granule neurons in vitro and in vivo to study neuronal morphology and migration. Journal of Visualized Experiments: JoVE. (85), e51070 (2014).
  13. Yang, Y., et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science. 353 (6296), 300-305 (2016).
  14. Herculano-Houzel, S. Coordinated scaling of cortical and cerebellar numbers of neurons. Frontiers in Neuroanatomy. 4, 12 (2010).
  15. Wilson, P. M., Fryer, R. H., Fang, Y., Hatten, M. E. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. Journal of Neuroscience. 30 (25), 8529-8540 (2010).
  16. Kokubo, M., et al. BDNF-mediated cerebellar granule cell development is impaired in mice null for CaMKK2 or CaMKIV. Journal of Neuroscience. 29 (28), 8901-8913 (2009).
  17. Schwartz, P. M., Borghesani, P. R., Levy, R. L., Pomeroy, S. L., Segal, R. A. Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning. Neuron. 19 (2), 269-281 (1997).
  18. Segal, R. A., Pomeroy, S. L., Stiles, C. D. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. Journal of Neuroscience. 15 (7), 4970-4981 (1995).
  19. Zhou, P., et al. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron. 55 (1), 53-68 (2007).
  20. Dhar, M., Hantman, A. W., Nishiyama, H. Developmental pattern and structural factors of dendritic survival in cerebellar granule cells in vivo. Scientific Reports. 8 (1), 17561 (2018).
  21. Ito, M. Synaptic plasticity in the cerebellar cortex and its role in motor learning. Canadian Journal of Neurological Sciences. 20, 70-74 (1993).
  22. Jorntell, H., Hansel, C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron. 52 (2), 227-238 (2006).
  23. Nakanishi, S. Genetic manipulation study of information processing in the cerebellum. 신경과학. 162 (3), 723-731 (2009).
  24. Chang, C. H., et al. Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Developmental Cell. 48 (2), 184-199 (2019).
check_url/kr/62568?article_type=t

Play Video

Cite This Article
Chan, U., Gautam, D., West, A. E. Utilizing In Vivo Postnatal Electroporation to Study Cerebellar Granule Neuron Morphology and Synapse Development. J. Vis. Exp. (172), e62568, doi:10.3791/62568 (2021).

View Video