Summary

穆林肺瓣膜相关成像的手术和样品处理

Published: August 05, 2021
doi:

Summary

在这里,我们描述了一个相关的工作流程的切除,加压,固定和成像的粘液肺瓣,以确定总构象和局部细胞外矩阵结构。

Abstract

心脏瓣膜相关疾病 (HVD) 的根本原因难以捉摸。Murine 动物模型为研究 HVD 提供了绝佳的工具,但是,在多个长度尺度上准确量化结构和组织所需的外科和器具专业知识阻碍了其发展。这项工作提供了详细的描述,以描绘不同长度尺度的心瓣膜解剖,集团染色,样品处理和相关成像程序。通过化学固定心脏瓣膜构象,用于控制时间异质性。微计算断层扫描 (μCT) 用于确认心脏瓣膜的几何形状,并为串行块面部扫描电子显微镜 (SBF-SEM) 所需的下游样品处理提供参考。拍摄了细胞外矩阵 (ECM) 的高分辨率序列 SEM 图像,并进行了重建,以提供其组织的本地 3D 表示。然后,将 μCT 和 SBF-SEM 成像方法关联在一起,以克服整个肺瓣的空间变化。虽然所介绍的工作完全在肺瓣上,但这种方法可以用来描述生物系统中的分层组织,并且对于跨多个长度尺度的结构特征至关重要。

Introduction

肺瓣膜 (PV) 用于确保右心室和肺动脉之间的单向血液流动。肺瓣膜畸形与几种形式的先天性心脏病有关。目前对先天性心脏瓣膜疾病(HVD)的治疗是瓣膜修复或瓣膜置换,这可能需要在患者一生中进行多次侵入性手术。人们普遍认为心脏瓣膜的功能来源于其结构,通常称为结构功能相关。更具体地说,心脏的几何和生物力学特性决定了心脏的功能。机械特性则由 ECM 的组成和组织决定。通过开发一种确定穆林心脏瓣膜生物力学特性的方法,转基因动物模型可用于质疑ECM在心脏瓣膜功能和功能障碍2、3、4、5中的作用。

长期以来,穆林动物模型一直被视为分子研究的标准,因为与其他物种相比,转基因模型在小鼠中更容易获得。穆林转基因模型为研究心脏瓣膜相关疾病提供了一个多功能的平台然而,几何学和ECM组织的特点的外科专业知识和仪器要求一直是推进HVD研究的主要障碍。文献中的病理学数据提供了一张图到穆林心脏瓣膜细胞外矩阵的内容,但仅以2D图像的形式,无法描述其3D架构7,8。此外,心脏瓣膜在空间和时间上都是异质的,因此,如果取样和构造不是固定的,则很难在有关ECM组织的实验中得出结论。传统的 3D 定性方法,如 MRI 或 3D 声心动图,不提供解决 ECM 组件9、10所需的分辨率。

这项工作详细介绍了一个完全相关的工作流程,其中通过修复与静水性转腔压力的粘液光伏的构象来解决心脏循环引起的时间异质性问题。空间异质性通过对感兴趣的区域进行采样和从不同的成像方式(特别是 μCT 和串行块面部扫描电子显微镜)中注册数据集,在不同的长度尺度上精确控制。这种用 μCT 进行侦察以引导下游取样的方法以前曾被提出过,但由于肺瓣膜存在时间变化,因此在手术11级需要额外的控制水平。

在描述穆林心脏瓣膜生物力学的体内研究中,生物力学很少,相反,在描述变形行为时依赖于计算模型。纳米长度尺度上的局部细胞外数据与心脏瓣膜的几何形状和位置相关至关重要。这反过来又提供了可量化的、空间映射的机械贡献ECM蛋白分布,可用于强化现有的生物力学心脏瓣膜模型12、13、14。

Protocol

本研究中动物的使用符合全国儿童医院机构动物护理和使用委员会根据AR13-00030协议。 1. 肺瓣切除 解密鼠标解剖所需的必要工具。这包括细剪刀、微钳子、微血管钳、夹子、微刀架、弹簧剪刀和缩回器。 手术前至少让所有小鼠适应2周。将C57BL/6小鼠(大约1岁)从笼子中取出并称重,然后用氯胺酮/西拉津鸡尾酒(3:1氯胺酮:西拉津,每克0.01ml)过量服用安乐死…

Representative Results

压管肺动脉的肺结膜病见图1A。在应用静水压力后,肺干会径向分散(图1B),表明肺瓣膜处于封闭配置中。肺瓣膜构造通过 μCT 确认。在这种情况下,传单是小品(封闭的),年鉴是圆形的(图2A)。图2B、C通过固定(图2B)或动脉塌陷(图2C)显示?…

Discussion

切除心室有两个目的。首先,将心室侧暴露在大气压力之下,因此只需要从肺瓣的动脉侧施加转腔压力来关闭:其次,提供一个稳定的基座,以防止肺干扭动。在加压过程中,肺干径向和低劣地分散,容易扭动,导致肺干坍塌。用盐水溶液预装肺瓣膜可以进行额外的质量检查,以确保加压充足,并且系统中是否存在泄漏。主固定剂的动作速度很快,大约几秒钟,无需用盐水溶液进行静水预装,肺?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了 R01HL139796 和 R01HL128847 赠款的支持,这些赠款用于 CKB 和 RO1DE028297 以及 DWM 的 CBET1608058。

Materials

25% glutaraldehyde (aq) EMS 16210 Primary fixative component
0.9% sodium chloride injection Hospira Inc. NDC 0409-4888-10
1 mL syringe BD 309659
10 mL syringe BD 309604
200 proof ethanol EMS 15055
22G needle BD 305156
3 mL syringe BD 309657
3-way stopcock Smiths Medical ASD, Inc. MX5311L
4% osmium tetroxide EMS 19150 Staining component
4% paraformaldehyde (aq) EMS 157-4-100 Primary fixative component
Absorbable hemostat Ethicon 1961
Acetone EMS 10012
Black polyamide monofilament suture, 10-0 AROSurgical instruments Corporation TI38402
Black polyamide monofilament suture, 6-0 AROSurgical instruments Corporation SN-1956
C57BL/6 mice Jackson Laboratories 664 Approximately 1 yo
Calcium chloride Sigma-Aldrich 10043-52-4
Clamp applying forcep FST 00072-14
Cotton tip applicators Fisher Scientific 23-400-118
DPBS Gibco 14190-144
Dumont #5 forcep FST 11251-20
Dumont #5/45 forceps FST 11251-35
Dumont #7 fine forcep FST 11274-20
Durcupan ACM resin EMS 14040 For embedding
Fine scissor FST 14028-10
Heliscan microCT Thermo Fisher Scientific Micro-CT
Ketamine hydrochloride injection Hospira Inc. NDC 0409-2053
L-aspartic acid Sigma-Aldrich 56-84-8 Staining component
Lead nitrate EMS 17900 Staining component
low-vacuum backscatter detector Thermo Fisher Scientific VSDBS SEM backscatter detector
Micro-adson forcep FST 11018-12
Millex-GP filter, 0.22 um, PES 33mm, non-sterile EMD Millipore SLGP033NS
Non-woven songes McKesson Corp. 94442000
Potassium hexacyanoferrate(II) trihydrate Sigma-Aldrich 14459-95-1 Staining component
Potassium hydroxide Sigma-Aldrich 1310-58-3
Pressure monitor line Smiths Medical ASD, Inc. MX562
Saline solution (sterile 0.9% sodium chloride) Hospira Inc. NDC 0409-0138-22
Size 3 BEEM capsule EMS 69910-01 Embedding container
Sodium cacodylate trihydrate Sigma-Aldrich 6131-99-3 Buffer
Solibri retractors FST 17000-04
Sputter, carbon and e-beam coater Leica EM ACE600 Gold coater
Surgical microscope Leica M80
Thiocarbohydrazide (TCH) EMS 21900 Staining component
Tish needle holder/forcep Micrins MI1540
Trimmer Wahl 9854-500
Uranyl acetate EMS 22400 Staining component
Volumescope scanning electron microscope Thermo Fisher Scientific VOLUMESCOPESEM Serial Block Face Scanning Electron Microscope
Xylazine sterile solution Akorn Inc. NADA# 139-236

References

  1. Azari, S., et al. A systematic review of the cost-effectiveness of heart valve replacement with a mechanical versus biological prosthesis in patients with heart valvular disease. Heart Failure Reviews. 25 (3), 495-503 (2020).
  2. Ng, C. M., et al. TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. Journal of Clinical Investigation. 114 (11), 1586-1592 (2004).
  3. Cheek, J. D., Wirrig, E. E., Alfieri, C. M., James, J. F., Yutzey, K. E. Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. Journal of Molecular and Cellular Cardiology. 52 (3), 689-700 (2012).
  4. Jiménez-Altayó, F., et al. Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome. Scientific Reports. 10 (1), 889 (2020).
  5. Thacoor, A. Mitral valve prolapse and Marfan syndrome. Congenital Heart Disease. 12 (4), 430-434 (2017).
  6. McAnulty, P., Dayan, A., Ganderup, N. -. C., Hastings, K., Dawson, H. A Comparative Assessment of the Pig, Mouse and Human Genomes. The Minipig in Biomedical Research. , (2011).
  7. Hinton, R. B., Yutzey, K. E. Heart valve structure and function in development and disease. Annual Review of Physiology. 73, 29-46 (2011).
  8. Hinton, R. B., et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circulation Research. 98 (11), 1431-1438 (2006).
  9. Sacks, M. S., Merryman, W. D., Schmidt, D. E., David Merryman, D. W., Schmidt, D. E. On the biomechanics of heart valve function. Journal of Biomechanics. 42 (12), 1804-1824 (2009).
  10. Sacks, M. S., Yoganathan, A. P. Heart valve function: a biomechanical perspective. Philosophical Transactions of the Royal Society B-Biological Sciences. 362 (1484), 1369-1391 (2007).
  11. Morales, A. G., et al. Micro-CT scouting for transmission electron microscopy of human tissue specimens. Journal of Microscopy. 263 (1), 113-117 (2016).
  12. Sacks, M. S., Smith, D. B., Hiester, E. D. The aortic valve microstructure: Effects of transvalvular pressure. Journal of Biomedical Materials Research. 41 (1), 131-141 (1998).
  13. Ayoub, S., et al. Heart valve biomechanics and underlying mechanobiology. Comprehensive Physiology. 6 (4), 1743-1780 (2016).
  14. Stella, J. A., Liao, J., Sacks, M. S. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. Journal of Biomechanics. 40 (14), 3169-3177 (2007).
  15. Korn, E. D., Weisman, R. A. I. loss of lipids during preparation of amoebae for electron microscopy. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism. 116 (2), 309-316 (1966).
  16. Tapia, J. C., et al. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nature Protocols. 7 (2), 193-206 (2012).
  17. Hinton, R. B., et al. Mouse heart valve structure and function: Echocardiographic and morphometric analyses from the fetus through the aged adult. American Journal of Physiology – Heart and Circulatory Physiology. 294 (6), 2480-2488 (2008).
  18. Denk, W., Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. Plos Biology. 2 (11), 1900-1909 (2004).
  19. Lincoln, J., Florer, J. B., Deutsch, G. H., Wenstrup, R. J., Yutzey, K. E. ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Developmental Dynamics. 235 (12), 3295-3305 (2006).
  20. Hamatani, Y., et al. Pathological investigation of congenital bicuspid aortic valve stenosis, compared with atherosclerotic tricuspid aortic valve stenosis and congenital bicuspid aortic valve regurgitation. PLoS One. 11 (8), (2016).
check_url/kr/62581?article_type=t

Play Video

Cite This Article
Liu, Y., Lee, Y., Yi, T., Wu, K., Bouchet-Marquis, C., Chan, H., Breuer, C. K., McComb, D. W. Surgery and Sample Processing for Correlative Imaging of the Murine Pulmonary Valve. J. Vis. Exp. (174), e62581, doi:10.3791/62581 (2021).

View Video