Summary

标记细胞外囊泡以监测软骨外植体的迁移和摄取

Published: October 04, 2021
doi:

Summary

在这里,我们提出了一种标记血小板裂解物衍生的细胞外囊泡的方案,以监测它们在软骨外植体中的迁移和摄取,这些外植体用作骨关节炎的模型。

Abstract

细胞外囊泡(EV)用于不同的研究,以证明其作为无细胞治疗的潜力,因为它们的货物来自其细胞来源,如血小板裂解物(PL)。当用作治疗时,EV有望进入靶细胞并从中产生反应。在这项研究中,PL衍生的EV已被研究为骨关节炎(OA)的无细胞治疗。因此,建立了一种方法来标记EV并测试它们在软骨外植体上的摄取。PL衍生的EV用亲脂性染料PKH26标记,通过柱洗涤两次,然后在通过纳米颗粒跟踪分析(NTA)进行颗粒定量后 在体外 炎症驱动的OA模型中测试5小时。每小时,将软骨外植体固定,石蜡化,切成6μm切片以安装在载玻片上,并在共聚焦显微镜下观察。这允许验证EV在此期间是否进入靶细胞(软骨细胞)并分析其直接影响。

Introduction

骨关节炎(OA)是一种关节退行性疾病,意味着进行性和不可逆的炎症和关节软骨细胞外基质的破坏1。虽然各种形式的关节炎有许多治疗方法2,3,4,但这些都受到其副作用和有限疗效的限制。使用自体软骨细胞植入的组织工程技术常规应用于早期OA软骨病变中受伤软骨的再生治疗4。基于细胞的疗法受到限制,主要是由于能够有效修复软骨的表型稳定的软骨细胞或软骨祖细胞的数量有限3。因此,开发新的治疗策略来预防疾病进展和再生大软骨病变至关重要。

细胞外囊泡(EV)已被不同的作者建议作为OA的治疗方法5,6。EV是由大多数细胞类型分泌的膜性体,参与细胞间信号传导,并且已被证明可以发挥干细胞的治疗作用7,8,9,因此它们最近引起了对再生医学的兴趣10。来自间充质基质细胞(MSCs)的EV是研究OA的主要治疗EV,尽管其他关节相关细胞已被用作EV来源,例如软骨祖细胞或免疫细胞11,12。

血小板浓缩物,如血小板裂解物(PLs),用于增强不同损伤的伤口愈合,如角膜溃疡13,14,15或肌腱组织再生16,因为假设血小板浓缩物的EV组分可能负责这些影响17.一些与关节相关疾病相关的研究使用血小板衍生的EV(PL-EV)作为改善骨关节炎疾病的治疗方法。PL-EV通过激活Wnt/β-catenin途径18来改善软骨细胞增殖和细胞迁移,促进骨关节炎软骨细胞19中软骨标志物的表达,或者在用PL-EVs18治疗的骨关节炎兔中显示出更高水平的软骨蛋白和更少的囊状异常。

EV含有释放到靶细胞的蛋白质,脂质和核酸,建立细胞间通讯,这是与其治疗应用相关的主要特征20。电动汽车的影响取决于它们到达细胞和随后的货物释放。这种效应可以通过细胞中引起的变化间接证实,例如代谢活动或基因表达修饰。然而,这些方法不允许可视化EV如何到达细胞以发挥其功能。因此,本文提出了一种标记这些PL衍生的EV的方法,以用作炎症驱动的OA软骨外植体的治疗方法。共聚焦显微镜用于监测EV的摄取和进展到外展体中存在的软骨细胞,延时为5小时。

Protocol

注:软骨外植体是在CEI-IB(IB 3656118 PI)对项目进行伦理批准后,根据机构指南从IdISBa生物库(IB 1995/12 BIO)获得的。 1. 色谱柱制备 按照制造商的说明或如下方式平衡色谱柱: 取下柱帽并平衡柱。通过洗脱取除去储存缓冲液。 用2.5mL磷酸盐缓冲盐水(PBS)洗涤色谱柱3次。在每次洗涤过程中,等待色谱柱吸收整个体积。注意:不要让色谱柱干燥。 …

Representative Results

EV标签和车载监测的原理图如图 1所示。 表1 中NTA检测到的颗粒浓度和EV大小表明,由于在用色谱柱标记后执行两次纯化步骤,EV浓度在加工过程中降低。然而,获得的量在用于处理的颗粒数量的最佳范围内。该颗粒浓度用于计算用于治疗骨关节炎软骨外植体的PKH-PL-EV和对照的体积。 一旦软骨外植体用EV或对照组处理,它们就会固定在不同的?…

Discussion

EV成像有助于了解EV特性,例如它们的释放和摄取机制。它们的成像允许监测它们的生物分布,并表征它们作为药物载体的药代动力学特性。然而,EV成像和跟踪可能由于其小尺寸而变得困难,尽管已经开发了许多成像设备和标记技术来帮助研究人员在体外体内条件下监测EV23,24,25。

通过?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由卡洛斯三世社会研究所资助,由欧洲社会基金和ERDF欧洲区域发展基金共同资助(MS16/00124;CP16/00124);由PROJECTA JUNIOR DEL PROYECTO TALENT PLUS,CONSTRUYENDO SALUD,GENERANDO VALOR(JUNIOR01/18)资助,由巴利阿里群岛的可持续旅游税资助;由 Direcció General d’Investigació, Conselleria d’Investigació, Govern Balear (FPI/2046/2017);由FUTURMed内的FOLIUM博士后计划(FOLIUM 17/01)资助,由巴利阿里群岛的可持续旅游税资助50%,由ESF资助50%;并由巴利阿里银行基金会和基金会委员会(CDI21/03)提供。

Materials

Material
1.5 mL Centrifuge tube SPL life sciences PLC60015
1 mL Syringe BD Plastipak BD 303174
2-Propanol (Isopropanol) Panreac AppliChem 1.310.901.211 Prepared at 20% with Milli-Q water
96-well culture plate SPL life sciences PLC30096
Absolute ethanol Pharmpur Scharlab ET0006005P Used to prepare 96% and 75% ethanol with Milli-Q water
Biopsy Punch with plunger 3 mm Scandidact MTP-33-32
Bovine serum Albumin (BSA) Sigma-Aldrich A7030 Prepared at 5% with PBS
Cartilage explants IdISBa Biobank
Concentrating tube 15 mL Nanosep 100 kD Omega Pall MCP100C41
Concentrating tube 500 µL Nanosep 100 kD Omega Pall OD003C33
Cover glass 24 x 60 mm Deltalab D102460
DMEM-F12 -GlutaMAX medium Biowest L0092
Dulbecco's PBS (1x) Capricorn Scientific PBS-1A
Embedded paraffin tissue blocks IdISBa Biobank Fee for service
Exo-spin mini-HD columns Cell guidance systems EX05
Feather S35 Microtome Blade Feather 43037
Filtropur S 0.2 µm syringe filter Sarstedt 83.1826.001
Fluoroshield with DAPI Sigma-Aldrich F-6057
Oncostatin M Human Sigma-Aldrich O9635-10UG Prepare a stock solution to a final concentration of 0.1 µg/µL diluten in PBS-0.1% BSA
Paraformaldehyde Sigma-Aldrich 8.18715.1000 Prepared at 4% with PBS and stored at 4 °C
Penicillin-Streptomycin Solution 100x Biowest L0022
PKH26 Red Fluorescent Cell Linker Kit for General Cell Membrane Labeling Sigma-Aldrich MINI26 PKH26 and Dliuent C included
Sodium citrate dihydrate Scharlab SO019911000
Superfrost Plus Microscope Slides Thermo Scientific J1800AMNZ
TNFα R&D systems 210-TA-005 Prepare a stock solution to a final concentration of 0.01 µg/µL diluted in PBS-0.1% BSA
Triton X-100 Sigma-Aldrich T8787 Used to prepare a 0.1% Triton-0.1% sodium citrate solution with Milli-Q water
Xylene Scharlab XI0050005P
Equipment
Centrifuge 5430 R Eppendorf 5428000210 F-45-48-11 rotor
NanoSight NS300 Malvern NS300 Device with embedded laser at λ= 532 nm and camera sCMOS
Shandon Finesse 325 Manual Microtome Thermo Scientific™ A78100101
TCS-SPE confocal microscope Leica Microsystems 5200000271

References

  1. Sutton, S., et al. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. The Veterinary Journal. 179 (1), 10-24 (2009).
  2. Zylińska, B., Silmanowicz, P., Sobczyńska-Rak, A., Jarosz, &. #. 3. 2. 1. ;., Szponder, T. Treatment of articular cartilage defects: Focus on tissue engineering. In Vivo. 32 (6), 1289-1300 (2018).
  3. Mobasheri, A., Kalamegam, G., Musumeci, G., Batt, M. E. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 78 (3), 188-198 (2014).
  4. Ringe, J., Burmester, G. R., Sittinger, M. Regenerative medicine in rheumatic disease-progress in tissue engineering. Nature Reviews Rheumatology. 8 (8), 493-498 (2012).
  5. Ringe, J., Burmester, G. R., Sittinger, M. Regenerative medicine in rheumatic disease-progress in tissue engineering. Nature Reviews Rheumatology. 8 (8), 493-498 (2012).
  6. Burke, J., et al. et al.Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clinical and Translational Medicine. 5 (1), 27 (2016).
  7. Doeppner, T. R., et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine. 4 (10), 1131-1143 (2015).
  8. Bruno, S., et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology. 20 (5), 1053-1067 (2009).
  9. Bruno, S., Camussi, G. Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatric Nephrology. 28 (12), 2249-2254 (2013).
  10. Théry, C. Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports. 3, 15 (2011).
  11. D’Arrigo, D., et al. Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. Journal of Clinical Medicine. 8 (11), 1867 (2019).
  12. Ryan, S. T., et al. Extracellular vesicles from mesenchymal stromal cells for the treatment of inflammation-related conditions. International Journal of Molecular Sciences. 22 (6), 1-34 (2021).
  13. El Backly, R., et al. Platelet lysate induces in vitro wound healing of human keratinocytes associated with a strong proinflammatory response. Tissue Engineering. Part A. 17 (13-14), 1787-1800 (2011).
  14. Yuta, K., et al. Graefe’s archive for clinical and experimental ophthalmology outcomes of phacoemulsification in patients with chronic ocular graft-versus-host disease. Bone Marrow Transplantation. 45 (3), 479-483 (2013).
  15. Del Bue, M., et al. Platelet lysate promotes in vitro proliferation of equine mesenchymal stem cells and tenocytes. Veterinary Research Communications. 31, 289-292 (2007).
  16. Klatte-Schulz, F., et al. Comparative analysis of different platelet lysates and platelet rich preparations to stimulate tendon cell biology: an in vitro study. International Journal of Molecular Sciences. 19 (1), 212 (2018).
  17. Headland, S. E., et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine. 7 (315), 1-13 (2015).
  18. Liu, X., et al. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway. Journal of Orthopaedic Surgery and Research. 14 (1), 470 (2019).
  19. Otahal, A., et al. Characterization and chondroprotective effects of extracellular vesicles from plasma- and serum-based autologous blood-derived products for osteoarthritis therapy. Frontiers in Bioengineering and Biotechnology. 8 (1), 584050 (2020).
  20. Penfornis, P., Vallabhaneni, K. C., Whitt, J., Pochampally, R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. International Journal of Cancer. 138 (1), 14-21 (2016).
  21. Ortega, F. G., et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine: Nanotechnology, Biology, and Medicine. 20, 102014 (2019).
  22. de Miguel Pérez, D., et al. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients. Scientific Reports. 10 (1), 1-13 (2020).
  23. Morelli, A. E., et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 104 (10), 3257-3266 (2004).
  24. Feng, D., et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 11 (5), 675-687 (2010).
  25. Chuo, S. T. Y., Chien, J. C. Y., Lai, C. P. K. Imaging extracellular vesicles: Current and emerging methods. Journal of Biomedical Science. 25, 91 (2018).
  26. Rice, B. W., Cable, M. D., Nelson, M. B. In vivo imaging of light-emitting probes. Journal of Biomedical Optics. 6 (4), 432 (2001).
  27. Lai, C. P., et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature Communications. 6, 7029 (2015).
  28. Takahashi, Y., et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. Journal of Biotechnology. 165 (2), 77-84 (2013).
  29. Askenasy, N., Farkas, D. L. Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells. 20 (6), 501-513 (2002).
  30. Tamura, R., Uemoto, S., Tabata, Y. Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflammation and Regeneration. 36, 26 (2016).
  31. Deddens, J. C., et al. Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac injury. Journal of Cardiovascular Translational Research. 9 (4), 291-301 (2016).
  32. Skardelly, M., et al. Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. Journal of Neurotrauma. 28 (3), 401-414 (2011).
  33. Protocol guide: Exosome labeling using PKH lipophilic membrane dyes. Sigma-Aldrich Available from: https://www.sigmaaldrich.com/technical-documents/protocols/biology/cell-culture/exosome-labeling-pkh.html (2021)
  34. Dehghani, M., Gulvin, S. M., Flax, J., Gaborski, T. R. Systematic evaluation of PKH labelling on extracellular vesicle size by nanoparticle tracking analysis. Scientific Reports. 10 (1), 1-10 (2020).
  35. Morales-Kastresana, A., et al. Labeling extracellular vesicles for nanoscale flow cytometry. Scientific Reports. 7 (1), 1-10 (2017).
  36. Takov, K., Yellon, D. M., Davidson, S. M. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. Journal of Extracellular Vesicles. 6 (1), 1388731 (2017).
  37. Mortati, L., et al. In vitro study of extracellular vesicles migration in cartilage-derived osteoarthritis samples using real-time quantitative multimodal nonlinear optics imaging. Pharmaceutics. 12 (8), 1-18 (2020).
check_url/kr/62780?article_type=t

Play Video

Cite This Article
Forteza-Genestra, M. A., Antich-Rosselló, M., Ortega, F. G., Ramis-Munar, G., Calvo, J., Gayà, A., Monjo, M., Ramis, J. M. Labeling of Extracellular Vesicles for Monitoring Migration and Uptake in Cartilage Explants. J. Vis. Exp. (176), e62780, doi:10.3791/62780 (2021).

View Video