Summary

土壤生物多样性中参与顽固性物质降解的真菌的分离与筛选

Published: May 16, 2022
doi:

Summary

在这里,我们提出了一个筛选土壤生物多样性的方案,以寻找参与顽固性物质降解的真菌菌株。首先,分离能够在腐植酸或木质纤维素上生长的真菌菌株。然后在酶测定和碳氢化合物和塑料等污染物上测试它们的活性。

Abstract

环境污染是一个日益严重的问题,识别生物修复过程中涉及的真菌是一项基本任务。土壤拥有令人难以置信的微生物生命多样性,可以成为这些生物修复真菌的良好来源。这项工作旨在通过使用不同的筛选测试来寻找具有生物修复潜力的土壤真菌。补充顽固物质作为唯一碳源的矿物培养基作为生长试验。首先,将土壤稀释液镀在培养皿上,用腐植酸或木质纤维素修饰矿物培养基。分离生长的真菌菌落并在不同的基质上进行测试,例如碳氢化合物(凡士林和用过的机油)的复杂混合物和不同塑料聚合物(PET,PP,PS,PUR,PVC)的粉末。定性酶测试与生长测试相关,以研究酯酶,漆酶,过氧化物酶和蛋白酶的产生。这些酶参与顽固物质的主要降解过程,并且它们被检查的真菌菌株的组成性分泌可能被利用用于生物修复。分离和测试了100多种菌株,并发现了几种具有良好生物修复潜力的分离株。总之,所描述的筛选测试是一种从土壤中鉴定具有生物修复潜力的真菌菌株的简单且低成本的方法。此外,还可以根据要求,通过在最少的培养基中添加其他顽固物质来定制不同污染物的筛选测试。

Introduction

土壤是地球上生命的基本组成部分,也是许多生态系统的基础。土壤中的矿物质,有机物和微生物可以被认为是一个系统,它们之间发生了密切的联系和相互作用。这些化合物的相互作用对陆地过程,环境质量和生态系统健康具有重要影响1。土壤污染在世界范围内造成了严重的环境问题。不分青红皂白、长期、过量地施用农药、石油产品、塑料等有毒物质,对土壤生态产生严重影响,从而改变土壤微生物群。土壤中的微生物群落由不同生理状态的各种生物组成,其中大多数是细菌和真菌。土壤中的许多污染物具有中长期稳定性,它们的持久性可以导致适应性机制的发展,使微生物能够利用顽固物质作为养分23。因此,这些微生物可以考虑用于生物修复技术。

生物修复试图通过利用微生物及其酶将废物降解或转化为毒性较小或无毒的化合物来减轻污染的影响。各种古菌,细菌,藻类和真菌都具有这种生物修复能力4。由于其特殊的生物降解作用,真菌是特别有前途的生物修复生物。它们可以使用其菌丝网络攻击不同的基质,使它们能够比其他微生物更有效地穿透土壤基质。此外,它们可以到达难以接近的间隙,其中污染物难以去除5,并且它们还可以承受低湿度水平6。此外,真菌合成不同的非特异性酶盒,通常降解天然顽固物质,如纤维素,木质素和腐植酸。那些缺乏目标基质的污染物可能参与各种顽固性污染物的降解,例如碳氢化合物,塑料和杀虫剂78910。因此,尽管许多真菌物种已被报告为生物修复剂,但人们越来越有兴趣探索尚未研究的物种,以选择抗性污染物质生物修复的候选物种。已知具有生物修复特性的物种属于子囊菌门11,1213,担子菌1415和粘菌科。例如,众所周知,霉属和曲霉属参与脂肪族烃13、不同塑料聚合物1617、18、重金属19和染料20的降解。同样,对担子菌真菌(如Phanerochaete chrysosporiumTrametes versicolor)进行的研究表明,它们参与氧化顽固性物质,如芳香烃13和塑料21。参与生物降解过程的真菌的另一个例子是合子菌根瘤菌属,Mucor spp.和Cunninghamella spp.2223。特别是,Cunninghamella能够氧化芳香烃,被认为是研究各种异种生物13产物解毒的模式生物。

有几种真菌酶参与顽固性物质2425的主要降解过程,如酯酶,漆酶,过氧化物酶和蛋白酶。漆酶是在细胞中产生并随后分泌的含铜氧化酶,允许氧化各种酚类和芳香族化合物。它们可以降解邻位和对二酚,含氨基的酚,木质素和含芳基的二胺26。过氧化物酶使用过氧化氢作为介质来降解木质素和其他芳香族化合物。有许多不同的过氧化物酶,但降解有毒物质的最大潜力的是木质素过氧化物酶和锰过氧化物酶27

酯酶和蛋白酶属于细胞外或外生细胞酶组,它们在其起源细胞外起作用,但仍与它们结合。这些酶可以催化大的顽固分子水解成较小的分子。由于其基质特异性低,这些酶可以在各种污染物的生物修复中发挥关键作用,例如纺织染料,纸浆和造纸工业释放的污水和皮革鞣制,石油产品,塑料和农药282930

已经发表了许多用于选择生物修复真菌菌株的筛选方法。例如,秸秆基琼脂培养基已被用于筛选多环芳烃(PAH)降解31中具有高潜力的白腐真菌;并将小块腐烂的木材放在麦芽提取物琼脂(MEA)上以分离腐烂木材的真菌32。然而,已经提出的大多数方法选择非常特定的真菌作为其感兴趣的活性。本研究提出了一种更广泛的方法,用于选择具有更广泛作用范围的土壤真菌。该方法依赖于将连续稀释的土壤样品初始镀层到用腐植酸或与抗生素混合的木质纤维素修饰的培养基上,以选择具有降解这些天然顽固物质的能力的真菌。事实上,腐植酸和木质纤维素是具有极强生物降解性的物质,因为它们具有非常复杂的分子结构,这使得它们成为被测真菌降解能力的优良指标3334。随后,对在第一次测试中选择的真菌进行筛选,以识别那些有可能降解特定污染物的真菌,例如凡士林,用过的机油和塑料。最后,进行定性酶测试以检测能够产生参与顽固性物质生物降解过程的酶的真菌菌株。为此,进行蛋白酶和酯酶测试,同时使用没食子酸和愈创木酚作为丙酶和其他木质素分解酶产生的指标3536。之所以使用这些底物,是因为已经发现真菌将其氧化成棕色形式的能力与拥有木质素溶解能力373839之间存在很强的相关性。

通过这些方案,可以直接从土壤样品中分离出具有高降解潜力和广泛作用的真菌菌株。这些真菌菌株的分离可以帮助找到用于生物修复目的的新候选者。

Protocol

1. 选择能够从土壤中降解顽固物质的真菌菌株 抗生素溶液的制备。 将青霉素(50毫克/升)、链霉素(40毫克/升)、金霉素(40毫克/升)、新霉素(100毫克/升)和氯霉素(100毫克/升)放入250毫升去离子无菌水中。 在向抗生素溶液中加入氯霉素之前,将其溶解在3mL≥99%乙醇中。 将抗生素溶液置于磁力搅拌器(无热量)上,并在溶液内用磁力搅拌棒10分钟?…

Representative Results

选择性培养基方法(协议第1节)允许筛选土壤丰富的生物多样性,并选择具有高生物修复潜力的真菌。用腐植酸和木质纤维素培养基,分离出100多种真菌菌株。这些真菌产生的酶参与天然顽固材料的生物降解,其化学结构类似于许多污染物。然而,用选择性培养基分离的真菌菌株需要进一步筛选。具体而言,选择性测试分离了能够降解腐植酸和木质纤维素的菌株,生长测试筛选了那些能够使用特…

Discussion

土壤丰富的生物多样性是真菌的丰富来源,具有许多代谢能力,其中一些可能是生物修复的潜在候选者。选择性培养基测试(协议的第1部分)是分离能够在天然复合聚合物上生长的真菌作为其唯一碳源的易于执行和有效的方法。真菌可以产生细胞外、非特异性水解酶和氧化还原酶30 ,例如木质素分解酶laccases和过氧化物酶31。这些酶可以降解木质纤维素和腐植?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢帕维亚大学的Scuola di Alta Formazione Dottorale(SAFD)和Solveig Tosi教授为这项工作提供了机会。

Materials

96 microwell plate Greiner bio-one 650185
Agar VWR 84609.05
Bushnell-Haas Broth Fluka B5051
CaCl2 Sigma-Aldrich C5670
Chloroamphenicol Eurobio GABCRL006Z
Chlortetracycline Sigma-Aldrich Y0001451
CoCl2·6H2O Sigma-Aldrich C8661
CuCl2·2H2O Sigma-Aldrich C3279
Ethanol VWR Chemicals 20821.296
FeCl3·6H2O Sigma-Aldrich 236489
Filter 0.2 µm Whatman 10462200
gallic acid Sigma-Aldrich G7384
Glass cover slips Biosigma VBS634
Glass vials 15 mL SciLabware P35467
guaiacol Sigma-Aldrich G5502
High-density polyethylene (HDPE) Sigma-Aldrich 434272
Humic acids Aldrich Chemistry 53680
K2HPO4 Sigma-Aldrich P8281
KH2PO4 Sigma-Aldrich P5655
Lignocellulose / / Sterilized bioethanol production waste
L-shaped cell spreader Laboindustria S.p.a 21133
magnetic stirrer A.C.E.F 8235
Malt Extract Broth Sigma-Aldrich 70146
MgSO4·7H2O Sigma-Aldrich M2643
Micropipette 1000 μL Gilson FA10006M
Micropipette 200  μL Gilson FA10005M
MnCl2·4H2O Sigma-Aldrich M5005
Na2MoO4·2H2O Sigma-Aldrich M1651
NaCl Sigma-Aldrich S5886
Neomycin Sigma-Aldrich N0401000
Penicillin Sigma-Aldrich 1504489
peptone Sigma-Aldrich 83059
Polyethylene terephthalate (PET) Goodfellow ES306031
Petri dishes Laboindustria S.p.a 21050
Petrolatum (Paraffin liquid) A.C.E.F 009661
Potato Dextrose Broth Sigma-Aldrich P6685
Polystyrene (PS) Sigma-Aldrich 331651
Polyurethane (PUR) Sigma-Aldrich GF20677923
Polyvinyl chloride (PVC) Sigma-Aldrich 81388
Sterile falcon tube Greiner bio-one 227 261
Sterile glass vials 20 mL Sigma-Aldrich SU860051
Sterile point 1000  μL Gilson F172511
Sterile point 200  μL Gilson F172311
Sterile polyethylene bags WHIRL-PAK B01018
sterile syringe Rays 5523CM25
Streptomycin Sigma-Aldrich S-6501
Tween 80 Sigma-Aldrich P1754
Used engine oil / / complex mixture of hydrocarbons, engine additives, and metals, provided by an Italian private company
Vials 50 mL Sigma-Aldrich 33108-U
ZnCl2 Sigma-Aldrich Z0152

References

  1. Mohammadi, K., Heidari, G., Khalesro, S., Sohrabi, Y. Soil management, microorganisms and organic matter interactions: A review. African Journal of Biotechnology. 10 (86), 19840-19849 (2011).
  2. Daccò, C., Girometta, C., Asemoloye, M. D., Carpani, G., Picco, A. M., Tosi, S. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. International Biodeterioration and Biodegradation. 147, (2020).
  3. Asemoloye, M. D., Ahmad, R., Jonathan, S. G. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere. 187, 1-10 (2017).
  4. Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M. The role of microorganisms in bioremediation – A review. Open Journal of Environmental Biology. 2, 038-046 (2017).
  5. Dix, N. J., Webster, J. . Fungal Ecology. , (1995).
  6. Magan, N., Esser, K., Lemke, P. A. Fungi in extreme environment. Environmental and Microbial Relationships. The Mycota. 4, 99-114 (2007).
  7. Aranda, E. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Current Opinion in Biotechnology. 38, 1-8 (2016).
  8. Hasan, I. F., AI-Jawhari, V., Kumar, M., Kumar, R., Prasad, Role of Filamentous Fungi to Remove Petroleum Hydrocarbons from the Environment. Microbial Action on Hydrocarbons. , (2018).
  9. Daccò, C., et al. Trichoderma: evaluation of its degrading abilities for the bioremediation of hydrocarbon complex mixtures. Applied Sciences. 10 (9), 3152 (2020).
  10. Alarcón, A., Davies, F. T., Autenrieth, R. L., Zuberer, D. A. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation. 10, 251-263 (2008).
  11. Mancera-López, M. E., et al. Bioremediation of an aged hydro-carbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration and Biodegradation. 61, (2008).
  12. Hatami, E., Abbaspour, A., Dorostkar, V. Phytoremediation of a petroleum-polluted soil by native plant species in Lorestan Province, Iran. Environmental Science and Pollution Research. 26, 24323-24330 (2019).
  13. Prenafeta-Boldú, F. X., De Hoog, G. S., Summerbell, R. C. Fungal communities in hydrocarbon degradation. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Handbook of Hydrocarbon and Lipid Microbiology. , 1-36 (2018).
  14. Gu, J., Ford, T., Mitton, D., Mitchell, R. Microbiological degradation of polymeric materials. Uhlig’s Corrosion Handbook. , 421-438 (2011).
  15. Tuomela, M., Hatakka, A. Oxidative fungal enzymes for bioremediation. Comprehensive Biotechnology: Environmental and Related Biotechnologies. 6, 224-239 (2019).
  16. DSouza, G. C., et al. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon. 7 (5), 07008 (2021).
  17. El-Sayed, M. T., Rabie, G. H., Hamed, E. A. Biodegradation of low-density polyethylene (LDPE) using the mixed culture of Aspergillus carbonarius and A. fumigates. Environment, Development, and Sustainability. 23 (10), 14556-14584 (2021).
  18. Sepperumal, U., Markandan, M., Palraja, I. Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. Journal of Microbiology and Biotechnology Research. 3 (4), 47-53 (2013).
  19. Leitão, A. L. Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health. 6 (4), 1393-1417 (2009).
  20. Chen, S. H., Ting, A. S. Y. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation. 103, 1-7 (2015).
  21. Orhan, Y., Buyukgungor, H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration and Biodegradation. 45, 49-55 (2000).
  22. Deshmukh, R., Khardenavis, A. A., Purohit, H. J. Diverse metabolic capacities of fungi for bioremediation. Indian journal of microbiology. 56 (3), 247-264 (2016).
  23. Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme research. 2014, 163242 (2014).
  24. Ali, M., Husain, Q., Ishqi, H. M. Fungal peroxidases mediated bioremediation of industrial pollutants. Fungal Bioremediation. , (2019).
  25. Nousiainen, P., Kontro, J., Manner, H., Hatakka, A., Sipilä, J. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetics and Biology. 72, 137-149 (2014).
  26. Srivastava, S., Kumar, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs): A sustainable approach. Sustainable Green Technologies for Environmental Management. , (2019).
  27. Wei, R., Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we. Microbial Biotechnology. 10 (6), 1308-1322 (2017).
  28. Matsubara, M., Lynch, J. M., De Leij, F. A. A. M. A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme and Microbial Technology. 39 (7), 1365-1372 (2006).
  29. Mann, J., et al. Screening and selection of fungi for bioremediation of olive mill wastewater. World Journal of Microbiology and Biotechnology. 26 (3), 567-571 (2010).
  30. Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., Šantek, B. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences. 18, 768-778 (2018).
  31. Goméz-Toribio, V., García-Martín, A. B., Martínez, M. J., Martínez, A. T., Guillén, F. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Applied and Environmental Microbiology. 75, 3944-3953 (2009).
  32. Belcarz, A., Ginalska, G., Kornillowicz-Kowalska, T. Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Applied Microbiology and Biotechnology. 68 (5), 686-694 (2005).
  33. Stevenson, F. J. . Humus Chemistry: Genesis, Composition, Reactions. 2nd ed. , (1995).
  34. Andlar, M., et al. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences. 18 (11), 768-778 (2018).
  35. Lee, H., et al. Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods. 97 (1), 56-62 (2014).
  36. Batista-García, R. A., et al. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. Journal of Environmental Management. 198, 1-11 (2017).
  37. Shleev, S. V., et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie. 86 (9-10), (2004).
  38. Kiiskinen, L. L., Rättö, M., Kruus, K. Screening for novel laccase-producing microbes. Journal of Applied Microbiology. 97, (2004).
  39. Kumar, V. V., Rapheal, V. S. Induction and purification by three-phase partitioning of aryl alcohol oxidase (AAO) from Pleurotus ostreatus. Applied Biochemistry and Biotechnology. , 163 (2011).
  40. Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R., Aguilar, C. N. Microbial enzymes involved in polyurethane biodegradation: a review. Journal of Polymers and the Environment. 20 (1), 258-265 (2012).
  41. Garriga, M., et al. Technological and sensorial evaluation of Lactobacillus strains as starter cultures in fermented sausages. International Journal of Food Microbiology. 32 (1-2), 173-183 (1996).
  42. Zerdani, I., Faid, M., Malki, A. Feather wastes digestion by new isolated strains Bacillus sp. In microcco. African Journal of Biotechnology. 3 (1), 67-70 (2004).
  43. Nygren, C. M., Edqvist, J., Elfstrand, M., Heller, G., Taylor, A. F. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza. 17 (3), 241-248 (2007).
  44. Asemoloye, M. D., et al. Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms. 8 (12), 1912 (2020).
check_url/kr/63445?article_type=t

Play Video

Cite This Article
Temporiti, M. E. E., Daccò, C., Nicola, L. Isolation and Screening from Soil Biodiversity for Fungi Involved in the Degradation of Recalcitrant Materials. J. Vis. Exp. (183), e63445, doi:10.3791/63445 (2022).

View Video