Summary

通过电感耦合等离子体质谱法对斑马鱼中铂基和钌基化合物暴露的剂量吸收,具有更广泛的应用

Published: April 21, 2022
doi:

Summary

斑马鱼中金属和金属基化合物的药代动力学和毒代动力学分析速率的提高对于环境和临床转化研究是有利的。通过使用电感耦合等离子体质谱对消化的斑马鱼组织进行痕量金属分析,克服了未知水性暴露摄取的局限性。

Abstract

金属和金属基化合物包括多种药活性和毒理学异种生物。从重金属毒性到化疗药物,这些化合物的毒代动力学具有历史和现代相关性。斑马鱼已成为环境暴露和临床转化研究中阐明药代动力学和毒代动力学的有吸引力的模式生物。虽然斑马鱼研究具有比啮齿动物模型更高的通量的好处,但该模型存在几个显着的限制。

水源性给药方案固有的一个这样的限制是固有的。这些研究的水浓度不能外推以提供可靠的内部剂量。直接测量金属基化合物可以与化合物相关的分子和生物反应更好地相关。为了克服金属和金属基化合物的这种局限性,开发了一种技术,用于在暴露后消化斑马鱼幼虫组织,并通过电感耦合等离子体质谱(ICPMS)量化组织样品中的金属浓度。

使用ICPMS方法测定斑马鱼组织中几种新型基于Ru的化疗药物中顺铂(Pt)和钌(Ru)的金属浓度。此外,该方案区分了与斑马鱼组织相比,螯合在幼虫绒毛膜中的Pt浓度。这些结果表明,该方法可用于定量幼虫组织中存在的金属剂量。此外,该方法可以调整以在广泛的暴露和剂量研究中鉴定特定的金属或金属基化合物。

Introduction

金属和金属基化合物继续具有药理学和毒理学相关性。自20世纪60年代以来,重金属暴露的流行及其对健康的影响呈指数级增长,并在2021年达到历史最高水平。饮用水,空气污染和职业暴露中重金属的浓度超过了全球范围内的监管限度,并且仍然是砷,镉,汞,铬,铅和其他金属的问题。量化环境暴露和分析病理发展的新方法继续处于高需求状态123

相反,医学领域已经利用各种金属的物理化学特性进行临床治疗。金属基药物或金属药物具有丰富的药用历史,并显示出对一系列疾病的活性,其中最有效的是化疗药物4。最著名的金属药物顺铂是一种基于Pt的抗癌药物,被世界卫生组织(WHO)认为是世界上必不可少的药物之一5.2010年,顺铂及其Pt衍生物在几种癌症中的成功率高达90%,并用于约50%的化疗方案678。尽管基于Pt的化疗药物取得了无可辩驳的成功,但剂量限制性毒性已经启动了对具有精制生物递送和活性的替代金属基药物的研究。在这些替代品中,Ru类化合物已成为最受欢迎的9101112

需要新的模型和方法来跟上金属药代动力学和毒代动力学研究的需求速度。斑马鱼模型位于复杂性和通量的交叉点,是一种高繁殖力的脊椎动物,具有70%保守的基因同源性13。该模型一直是药理学和毒理学的资产,对各种化合物进行了广泛的筛选,以进行先导物发现,靶标鉴定和机理活性14151617。然而,化学品的高通量筛选通常依赖于水性暴露。鉴于摄取可以根据溶液中化合物的物理化学性质(即光降解,溶解度)而变化,这可能是相关剂量递送和反应的主要限制。

为了克服与高等脊椎动物比较剂量的这一局限性,设计了一种方法来分析斑马鱼幼虫组织中的痕量金属浓度。在这里,评估了顺铂和新型基于Ru的抗癌化合物的致死和亚致死终点的剂量 – 反应曲线。对标称浓度为0、3.75、7.5、15、30和60mg/L顺铂的致死性和延迟孵化进行评估。通过ICPMS分析测定微生物组织中Pt的积累,生物体对各剂量的摄取量分别为0.05、8.7、23.5、59.9、193.2和461.9ng(Pt)。此外,斑马鱼幼虫暴露于0,3.1,6.2,9.2,12.4mg / L的PMC79。分析测定这些浓度含有0,0.17,0.44,0.66和0.76mg / L Ru。该方案还允许与斑马鱼组织区分幼虫绒毛膜中螯合的Pt浓度。该方法能够为比较完善的化疗药物和新型化合物之间的药代动力学和毒代动力学活性提供可靠,可靠的数据。该方法可应用于各种金属和金属基化合物。

Protocol

AB菌株斑马鱼(Danio rerio)用于所有实验(见 材料表),饲养方案(#08-025)由罗格斯大学动物护理和设施委员会批准。 1. 斑马鱼养殖 在循环水生生境系统中繁殖和维持斑马鱼,采用14小时光照:10小时黑暗循环。 通过沙子和碳过滤净化市政自来水,获得鱼类系统水。将水生系统水保持在28°C,<0.05 ppm亚硝酸盐,<0.2 ppm氨,pH值在7.2?…

Representative Results

这些结果之前已经发布了24。组织摄取研究是在顺铂和一种新型基于Ru的抗癌化合物PMC79的水源暴露下进行的。评估顺铂 0、3.75、7.5、15、30 和 60 mg/L 顺铂标称浓度的致死性和延迟孵化。通过ICPMS分析测定微生物组织中Pt的积累,生物体组织中每个生物体的含量分别为0.05,8.7,23.5,59.9,193.2和461.9ng(Pt) (图3)。鉴于顺铂的已知稳?…

Discussion

这里描述的方案已经实施以确定含有Pt或Ru的金属基抗癌药物的递送和摄取。尽管这些方法已经发表,但该协议讨论了使该方法适用于一系列化合物的重要考虑因素和细节。经合组织方案与组织消化和ICPMS分析相结合,使我们能够确定PMC79比顺铂更有效,并导致不同的组织积累,这表明了不同的机制。此外,由于顺铂的递送剂量被量化,剂量反应结果被外推到患者群体。亚致死剂量(例如LOAEL)与患…

Disclosures

The authors have nothing to disclose.

Acknowledgements

资助:NJAES-Rutgers NJ01201,NIEHS培训补助金T32-ES 007148,NIH-NIEHS P30 ES005022。此外,布列塔尼卡拉斯还得到了NIDS,NIH的培训补助金T32NS115700的支持。作者感谢Andreia Valente和葡萄牙科学技术基金会(Fundação para a Ciência e Tecnologia, FCT;PTDC/QUI-QIN/28662/2017)供应PMC79。

Materials

AB Strain Zebrafish (Danio reri) Zebrafish International Resource Center Wild-Type AB Wild-Type AB Zebrafish
ACS Grade Nitric Acid VWR BDH Chemicals BDH3130-2.5LP Nitric Acid (68-70%); used to make 10% HNO3 acid-bath solution for soaking/pre-celaning centrifuge tubes
Aquatox Fish Diet (Flake) Zeigler Bros, Inc. Flake food to be mixed in a 1:4 ratio of Aquatox Fish Diet to TetraMin Tropical Flakes and used as feed
Artemia cysts, brine shrimp PentairAES BS90 Brine shrimp eggs sold in 15-ozz, vacuum-packed cans to be hatched and used as feed
ASX-510 Autosampler for ICPMS Teledyne CETAC Automatic sampler with conifgurable XYZ movement, flowing rinse station, and 0.3 mm inner dimension probe. Compatible with Nu AttoLab software for programmable batch analyses.  
Centrifuge Thermo Scientific CL 2 Thermo Scientific CL 2 compact benchtop centrifuge with variable speed range up to 5200 rpm; used to bring sample and acid condensate to the bottom of the centrifuge tube bewteen microwave digestion intervals; aids in sample retention
Centrifuge tubes VWR 21008-105 Ultra high performance polypropylene centrifuge tubes with flat cap; 15 mL volume; leak-proof with conical bottom
Class A Clear Glass Threaded Vials Fisherbrand 03-339-25B Individual glass vials for exposure containment
Dimethyl Sulfoxide Millipore Sigma D8418 Solvent or vehicle for hydrophobic compounds
Fixed Speed Vortex Mixer VWR 10153-834 Vortex mixer; used to homogenize sample after acid digestion and dilution
High Purity Hydrogen Peroxide Merk KGaA, EDM Millipore 1.07298.0250 Suprapur Hydrogen peroxide (30%); used for sample digestion
High Purity Nitric Acid EDM Millipore NX0408-2 Omni Trace Ultra Nitric Acid (69%); used for sample digestion
Instant Ocean Sea Salt Spectrum Brands, Inc. Instant Ocean® Sea Salt Egg water solution contains instand ocean sea salt with a final concentration of 60 µg/ml
Mars X Microwave Digestion System CEM, Matthews, NC Microwave acid digestion system used to digest and homogenize samples under uniform conditions. For this methodology the open vessel digestion method was completed using single-use polypropylene centrifuge tubes at low power (300 W). 
Multi-element Solution 3 SPEX CertiPREP CLMS-3 Contains 10 mg/L Au, Hf, Ir, Pd, Pt, Fu, Sb, Sr, Te, Sn in 10% HCl/1% HNO3; used as a quality control standard for Pt and Ru analyses
Nu Instruments AttoM High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICP-MS) Nu Instruments/Amatek Double focussing magnetic sector inductively coupled plasma mass spectrometer with flexible low to high resolution slit system, and dynamic range detector system. Data processing and quantification is done using NuQuant companion software. 
Platinum (Pt) standard solution, NIST 3140 National Institute of Standards and Technology 3140 Prepared from ampoule containing 9.996 mg/g Pt in 10% HCl; ; used as a quality control standard for Pt analyses
Platinum (Pt) standard solution, single-element High Purity Standards 100040-2 Contains 1000 mg/L Pt in 5% HCl
Ruthenium (Ru) standard solution, single-element High Purity Standards 100046-2 Contains 1000 mg/L Ru in 2% HCl
TetraMin Tropical Flakes Tetra 77101 Flake food to be mixed in a 1:4 ratio of Aquatox Fish Diet to TetraMin Tropical Flakes and used as feed
Trace Metal Grade Nitric Acid VWR BDH Chemicals 87003-261 Aristar Plus Nitric Acid (67-70%); used for rinse solution in ASX-510 Autosampler
Ultrasonic water bath VWR B2500A-DTH Ultrasonic water bath used to aid in acid digestion prior to microwave digestion

References

  1. Rehman, K., Fatima, F., Waheed, I., Akash, M. S. H. Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry. 119 (1), 157-184 (2018).
  2. Anyanwu, B. O., Ezejiofor, A. N., Igweze, Z. N., Orisakwe, O. E. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 6 (4), 65 (2018).
  3. Doherty, C. L., Buckley, B. T. Translating analytical techniques in geochemistry to environmental health. Molecules. 26 (9), 2821 (2021).
  4. Boros, E., Dyson, P. J., Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem. 6 (1), 41-60 (2020).
  5. Robertson, J., Barr, R., Shulman, L. N., Forte, G. B., Magrini, N. Essential medicines for cancer: WHO recommendations and national priorities. Bulletin of the World Health Organization. 94 (10), 735-742 (2016).
  6. Wheate, N. J., Walker, S., Craig, G. E., Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions. 39 (35), 8113-8127 (2010).
  7. Brown, A., Kumar, S., Tchounwou, P. B. Cisplatin-based chemotherapy of human cancers. Journal of Cancer Science & Therapy. 11 (4), 97 (2019).
  8. Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorganic Chem. 88, 102925 (2019).
  9. Abid, M., Shamsi, F., Azam, A. Ruthenium complexes: an emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Reviews in Medicinal Chemistry. 16 (10), 772-786 (2016).
  10. Alessio, E., Messori, L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules. 24 (10), 1995 (2019).
  11. Alessio, E., Mestroni, G., Bergamo, A., Sava, G. Ruthenium antimetastatic agents. Current Topics in Medicinal Chemistry. 4 (15), 1525-1535 (2004).
  12. Lin, K., Zhao, Z. -. Z., Bo, H. -. B., Hao, X. -. J., Wang, J. -. Q. Applications of ruthenium complex in tumor diagnosis and therapy. Frontiers in Pharmacology. 9, 1323 (2018).
  13. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  14. Wiley, D. S., Redfield, S. E., Zon, L. I. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods in Cell Biology. 138, 651-679 (2017).
  15. Bambino, K., Chu, J. Zebrafish in toxicology and environmental health. Current Topics in Developmental Biology. 124, 331-367 (2017).
  16. Rubinstein, A. L. Zebrafish assays for drug toxicity screening. Expert Opinion on Drug Metabolism & Toxicology. 2 (2), 231-240 (2006).
  17. Cassar, S., et al. Use of zebrafish in drug discovery toxicology. Chemical Research in Toxicology. 33 (1), 95-118 (2020).
  18. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th edition. , (2000).
  19. Material safety data sheet: cisplatin injection). Pfizer Available from: https://cdn.pfizer.com/pfizercom/products/material_safety_data/PZ01470.pdf (2011)
  20. Nasiadka, A., Clark, M. D. Zebrafish breeding in the laboratory environment. ILAR Journal. 53 (2), 161-168 (2012).
  21. OECD. Test No. 236: Fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals Available from: https://www.oecd-ilibrary.org/environment/test-no-236-fish-embryo-acute-toxicity-fet-test_9789264203709-en (2013)
  22. EMD Millipore Corporation. Material Safety Data Sheet: OmniTrace Nitric Acid. EMD Millipore Corporation. , (2013).
  23. Safety data sheet: Hydrogen peroxide 30% Suprapur. EMD Millipore Corporation Available from: https://www.merckmillipore.com/IN/en/product/Hydrogen-peroxide-300-0 (2014)
  24. Karas, B. F., et al. A novel screening method for transition metal-based anticancer compounds using zebrafish embryo-larval assay and inductively coupled plasma-mass spectrometry analysis. Journal of Applied Toxicology. 39 (8), 1173-1180 (2019).
  25. Henn, K., Braunbeck, T. Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP. 153 (1), 91-98 (2011).
  26. Mandrell, D., et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. Journal of Laboratory Automation. 17 (1), 66-74 (2012).
  27. Karas, B. F., Hotz, J. M., Buckley, B. T., Cooper, K. R. Cisplatin alkylating activity in zebrafish causes resistance to chorionic degradation and inhibition of osteogenesis. Aquatic Toxicology. 229, 105656 (2020).
check_url/kr/63587?article_type=t

Play Video

Cite This Article
Karas, B. F., Doherty, C. L., Terez, K. R., Côrte-Real, L., Cooper, K. R., Buckley, B. T. Dose Uptake of Platinum- and Ruthenium-based Compound Exposure in Zebrafish by Inductively Coupled Plasma Mass Spectrometry with Broader Applications. J. Vis. Exp. (182), e63587, doi:10.3791/63587 (2022).

View Video