Summary

肝组织3D细胞培养模型中组蛋白翻译后修饰的全球水平定量

Published: May 05, 2022
doi:

Summary

该协议概述了如何使用三维细胞培养系统在接近生理状态下对染色质修饰进行建模,治疗和分析。

Abstract

哺乳动物细胞的平面培养是一种广泛用于了解细胞生理学 的体外 方法,但由于细胞复制不自然的快速,该系统在模拟固体组织方面受到限制。在模拟成熟染色质时,这尤其具有挑战性,因为快速复制的细胞经常参与DNA复制并且具有异质多倍体群体。下面介绍的是使用三维(3D)细胞培养系统建模,处理和分析静态染色质修饰的工作流程。使用该协议,肝细胞癌细胞系在培养箱中作为可重复的3D球体生长,提供活性营养扩散和低剪切力。用丁酸钠和琥珀酸钠治疗分别诱导组蛋白乙酰化和琥珀酰化的增加。组蛋白乙酰化和琥珀酰化水平的增加与更开放的染色质状态有关。然后收集球状体以分离细胞核,从中提取组蛋白以分析其翻译后修饰。组蛋白分析 通过 液相色谱法在线与串联质谱法相结合,然后进行内部计算管道。最后,显示了数据表示的示例,以研究组合组蛋白标记的频率和发生。

Introduction

自19世纪末 以来,细胞培养系统已被用作研究人体外细胞生长和发育的模型12。它们的使用也已扩展到研究组织和器官如何在健康和患病环境中发挥作用13。悬浮细胞(例如,血细胞)在培养皿或烧瓶中无缝且可互换地生长,因为它们 在体内不以三维(3D)结构组装。来自实体器官的细胞可以在二维(2D)或3D培养系统中生长。在2D培养中,细胞在粘附在平坦表面的单层中生长24。2D细胞培养系统的特点是指数增长和快速倍增时间,通常为24小时至几天5。3D系统中的细胞生长形成复杂的细胞 – 细胞相互作用,更紧密地模拟组织样砾岩,并且它们的特征在于它们能够达到动态平衡,其中它们的倍增时间可以达到1个月或更长时间5

本文介绍了一种在模拟重力降低的旋转细胞培养系统中培养3D球体的创新方法6。这是NASA在1990年代推出的细胞培养系统的简化衍生物7。这种方法可以最大限度地减少现有方法(如旋转烧瓶)中发生的剪切力,并提高球体再现性6。此外,旋转生物反应器增加了活性营养物质扩散,最大限度地减少了在悬挂式滴细胞培养等系统中发生的坏死形成,其中培养基交换是不切实际的6。通过这种方式,细胞生长大多不受干扰,允许形成与组织中生长的细胞相关的结构和生理特征。以这种方式培养的C3A肝细胞(HepG2 / C3A)不仅具有超微结构细胞器,而且还产生与体内观察到的水平相当的ATP,腺苷酸激酶,尿素和胆固醇的量12。此外,在2D与细胞培养系统中生长.3D细胞培养系统表现出不同的基因表达模式8。作为3D球体生长的C3A肝细胞的基因表达分析表明,这些细胞表达广泛的肝脏特异性蛋白,以及参与调节肝功能的关键途径的基因8。先前的出版物证明了2D培养物中指数增长细胞的蛋白质组与3D球体培养物中动态平衡的细胞之间的差异5。这些差异包括细胞代谢,这反过来又会影响细胞5的结构,功能和生理学。在2D培养物中生长的细胞的蛋白质组在参与细胞复制的蛋白质中更富集,而3D球体的蛋白质组在肝功能中更丰富5

作为3D球体生长的细胞的较慢复制速率更准确地模拟与染色质状态和修饰相关的特定现象(例如组蛋白剪切9)。组蛋白剪切是一种不可逆的组蛋白翻译后修饰(PTM),可导致组蛋白N端尾部部分蛋白水解裂解。虽然它的生物学功能仍在讨论10111213,但很明显,它在原代细胞和肝脏组织中的存在是由作为球状体生长的HepG2 / C3A细胞模拟的,而不是扁平细胞9。这是至关重要的,因为染色质状态和修饰主要通过调节基因的可及性来调节DNA读数,从而调节它们的表达14。组蛋白PTM要么通过影响组蛋白组装的核小体的净电荷来直接影响染色质状态,要么通过招募染色质写入者,读取器和橡皮擦间接影响染色质状态14。迄今为止,已经鉴定出数百个组蛋白PTM15,这加强了染色质具有细胞用来解释DNA16的“组蛋白代码”的假设。然而,无数PTM组合15的鉴定,以及组蛋白PTM组合通常与孤立存在的PTM具有不同的生物学功能的发现(例如Fischle等人17),强调了需要更多的工作来解密“组蛋白代码”。

目前,组蛋白 PTM 分析要么基于利用抗体(例如,蛋白质印迹、免疫荧光或染色质免疫沉淀,然后进行测序 [ChIP-seq])的技术,要么基于质谱 (MS) 的技术。基于抗体的技术具有高灵敏度,可以提供关于组蛋白标记全基因组定位的详细信息,但在研究以组合形式存在的罕见PTM或PTM时通常受到限制181920。MS更适合于单一和共存蛋白质修饰的高通量和无偏倚的鉴定和定量,特别是组蛋白181920。由于这些原因,该实验室和其他几个实验室已经优化了MS管道,用于分析组蛋白肽(自下而上的MS),完整的组蛋白尾巴(中下MS)和全长组蛋白(自上而下的MS)212223

下面详细介绍了用于生长HepG2 / C3A球体的工作流程, 并通过 纳米液相色谱法在线结合串联质谱(nLC-MS / MS)制备它们以进行组蛋白肽分析(自下而上的MS)。培养2D细胞培养物,收获细胞并将其转移到生物反应器中,在那里它们将开始形成球体(图1)。培养18天后,用丁酸钠或琥珀酸钠处理球状体,以增加组蛋白乙酰化和琥珀酰化相对丰度。值得注意的是,3D培养物可以用遗传毒性化合物及其扁平培养物等价物进行处理;事实上,最近的出版物强调,3D培养物中细胞的毒理学反应比2D平板培养物中的细胞更类似于原代组织2425。然后在指定的时间点收集细胞并进行核分离。然后,根据Garcia等人首先开发的方案,在胰蛋白酶消化之前和之后提取组蛋白并用丙酸酐衍生化。该过程产生适当大小的肽,用于反相色谱(C18)的在线分离和MS检测。最后,组蛋白肽被鉴定和定量,并且生成的数据以多种方式表示,以获得更完整的生物学解释。

Protocol

1. 缓冲液和试剂的制备 细胞生长培养基(用于HepG2 / C3A细胞):将胎牛血清(FBS)(10%v / v),非必需氨基酸(1%v / v),L-谷氨酰胺补充剂(1%v / v)和青霉素/链霉素(0.5%v / v)添加到Dulbecco的改良鹰培养基(DMEM,含有4.5 g / L葡萄糖)中。生长培养基在4°C下储存最多2周。 200 mM丁酸钠(NaBut)溶液:制备10 mL,将220.18mg NaBut重悬于10 mL ddH2O中,在-20°C下储存1mL等分?…

Representative Results

在该方案中,用20 mM NaBut和10 mM NaSuc处理HepG2 / C3A球体,两者都影响组蛋白PTM的全局水平(图3A)。然后 通过 MS / MS采集在单个残留水平上鉴定和定量组蛋白PTM(图3B)。 当样品在重复中运行时,可以进行统计分析以评估样品之间PTM的倍变富集以及观察的可重复性。显示的数据表明,用乙酰化修饰的肽在用NaBut处理的球状体中?…

Discussion

组蛋白PTM的分析与典型的蛋白质组学分析管道有根本的不同。大多数组蛋白PTM仍然具有神秘的生物学功能;因此,诸如基因本体论或通路数据库之类的注释不可用。存在几种资源将组蛋白修饰与负责其催化的酶或含有结合这些PTM的结构域的蛋白质(例如,HISTome36)相关联。同样,当组蛋白PTM的全球水平受到调节时,可以推测染色质的整体状态。例如,组蛋白乙酰化或其他酰化(如…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Sidoli实验室感谢白血病研究基金会(Hollis Brownstein新研究员研究资助),AFAR(Sagol Network GerOmics奖),Deerfield(Xseed奖),Relay Therapeutics,Merck和NIH主任办公室(1S10OD030286-01)。

Materials

0.05% trypsin-EDTA solution Gibco 25300054
0.5-20 µL pipet tips BRAND 13-889-172 (Fisher Scientific)
1.5 mL microcentrifuge tubes Bio-Rad 2239480
10 µL multi-channel pipette BRAND BR7059000 (Millipore Sigma)
10 mL syringe Henke Sass Wolf 14-817-31 (Fisher Scientific) Luer lock tip, graduated to 12 mL
10, 20, 200, and 1000 µL single-channel pipettes Eppendorf 14-285-904 (Fisher Scientific)
1000 µL pipet tips Rainin 30389164
18 G syringe needle Air-Tite 14-817-100 (Fisher Scientific) 3" length, 0.05" diameter
200 µL multi-channel pipette Corning 4082
2-200 µL pipet tips BRAND Z740118 (Millipore Sigma)
24-well ultra-low attachment microplate Corning 07-200-602
75 cm2  U-shaped cell culture flask Corning 461464U Untreated, with vent cap
96-well skirted plate Axygen PCR-96-FS-C (Corning)
Acetone Fisher Scientific A949-1 Acetone should be used cold
Ammonium bicarbonate (NH4HCO3) Sigma-Aldrich A6141-25G
Ammonium hydroxide solution Fisher Scientific AC423300250
Cell culture grade water Corning 25-055-CV
ClinoReactor CelVivo 10004-12 Bioreactor for 3D cell culture
ClinoStar CelVivo N/A Clinostat CO2 incubator for 3D cell culture
Control unit CelVivo N/A Tablet for ClinoStar settings
Dulbecco's Modified Eagle's Medium (DMEM) Corning 17-205-CV 1X solution with 4.5 g/L glucose and sodium pyruvate, without L-glutamine and phenol red
Fetal bovine serum (FBS) Corning 35-010-CV
Formic acid Thermo Scientific 28905
Fume hood Mott N/A Model 7121000
Glass Pasteur pipette Fisher Scientific 13-678-8B 9", cotton-plugged, borosilicate glass, non-sterile
Glutagro supplement Corning 25-015-CI 200 mM L-ananyl-L-glutamine
Hank’s Balanced Salt Solution (HBSS) Corning 21-022-CV 1X solution without calcium, magnesium, and phenol red
HPLC grade acetonitrile Fisher Scientific A955-4
HPLC grade water Fisher Scientific W6-1
Hydrochloric acid (HCl) Fisher Scientific A481-212
Ice N/A N/A
MEM non-essential amino acids Corning 25-025-CI 100X solution
Oasis HLB resin Waters 186007549 Hydrophilic-Lipophilic-Balanced (HLB) Resin with 30µm particle size
Orbitrap Fusion Lumos Tribrid mass spectrometer Thermo Fisher Scientific IQLAAEGAAPFADBMBHQ High resolution mass spectrometer
Oro-Flex I polypropylene filter plate Orochem OF1100 96-well polypropylene filter plate w/ 10 µM PE frit
Penicillin-Streptomycin Corning 30-002-CI 100X solution
pH paper Hydrion Z111848 (Sigma-Aldrich) 0-13 pH test paper
Pipette gun Eppendorf Z666467 (Millipore Sigma)
Polymicro capillary Molex 50-110-7740 (Fisher Scientific) Flexible fused silica capillary tubing with polymide coating, 75 µM ID x 363 µM OD
Polystyrene 10 mL serological pipets, sterile Fisher Scientific 1367549
Propionic anhydride Sigma-Aldrich 240311-50G
Refrigerated centrifuge Thermo Scientific 75-217-420
Reprosil-Pur resin MSWIL R13.AQ.0003 120 Å pore size, C18-AQ phase, 3 µM bead size
Rotator Clay Adams 25477 (American Laboratory Trading) Nutator Mixer 1105
Sequencing grade modified trypsin Promega V5111
Sodium butyrate Thermo Scientific A11079
Sodium succinate dibasic Sigma-Aldrich 14160-100G
SpeedVac vacuum concentrator (1.5 mL microcentrifuge tubes) Savant 20249 (American Laboratory Trading)
SpeedVac vacuum concentrator (96-well) Thermo Scientific 15308325 Savant SPD1010
Sterile hood Thermo Scientific 1375 Class II, Type A2
Sulfuric acid (H2SO4) Fisher Scientific 02-004-375 Baker Analyzed ACS reagent
Tissue-culture treated 100 mm x 20 mm dish Fisher Scientific 08-772-23
Trichloroacetic acid (TCA) Thermo Scientific AC421451000 Resuspend 100% w/v in HPLC grade water
Trifluoroacetic acid (TFA) Fisher Scientific PI28904 Sequencing grade
Vacuum manifold 96-well Millipore MAVM0960R
Vortex Sigma-Aldrich Z258415
Water bath Fisher Scientific FSGPD10
Wide bore pipet tips 1000 µL Axygen 14-222-703 (Fisher Scientific)
Wide bore pipet tips 200 µL Axygen 14-222-730 (Fisher Scientific)

References

  1. Kapalczynska, M., et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Archives of Medical Science. 14 (4), 910-919 (2018).
  2. Breslin, S., O’Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today. 18 (5-6), 240-249 (2013).
  3. Kim, J. B. Three-dimensional tissue culture models in cancer biology. Seminars in Cancer Biology. 15 (5), 365-377 (2005).
  4. Duval, K., et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 32 (4), 266-277 (2017).
  5. Wrzesinski, K., et al. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS One. 9 (9), 106973 (2014).
  6. Wrzesinski, K., Fey, S. J. Metabolic reprogramming and the recovery of physiological functionality in 3D cultures in micro-bioreactors. Bioengineering (Basel). 5 (1), 22 (2018).
  7. Gonda, S. R., et al. Three-dimensional transgenic cell model to quantify genotoxic effects of space environment. Advances in Space Research. 27 (2), 421-430 (2001).
  8. Yamada, K. M., Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell. 130 (4), 601-610 (2007).
  9. Tvardovskiy, A., et al. Top-down and middle-down protein analysis reveals that intact and clipped human histones differ in post-translational modification patterns. Molecular and Cellular Proteomics. 14 (12), 3142-3153 (2015).
  10. Azad, G. K., et al. Modifying chromatin by histone tail clipping. Journal of Molecular Biology. 430 (18), 3051-3067 (2018).
  11. Kragesteen, B. K., Amit, I. Heads or tails: histone tail clipping regulates macrophage activity. Nature Immunology. 22 (6), 678-680 (2021).
  12. Dhaenens, M. Histone clipping: the punctuation in the histone code. EMBO Reports. 22 (8), 53440 (2021).
  13. Anderson, L. C., et al. Analyses of histone proteoforms using front-end electron transfer dissociation-enabled orbitrap instruments. Molecular and Cellular Proteomics. 15 (3), 975-988 (2016).
  14. Morgan, M. A. J., Shilatifard, A. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nature Genetics. 52 (12), 1271-1281 (2020).
  15. Chan, J. C., Maze, I. Nothing is yet set in (hi)stone: novel post-translational modifications regulating chromatin function. Trends in Biochemical Sciences. 45 (10), 829-844 (2020).
  16. Jenuwein, T., Allis, C. D. Translating the histone code. Science. 293 (5532), 1074-1080 (2001).
  17. Fischle, W., et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes and Development. 17 (15), 1870-1881 (2003).
  18. Onder, O., et al. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Review of Proteomics. 12 (5), 499-517 (2015).
  19. Sidoli, S., Cheng, L., Jensen, O. N. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. Journal of Proteomics. 75 (12), 3419-3433 (2012).
  20. Egelhofer, T. A., et al. An assessment of histone-modification antibody quality. Nature Structural and Molecular Biology. 18 (1), 91-93 (2011).
  21. Moradian, A., et al. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics. 14 (4-5), 489-497 (2014).
  22. Zheng, Y., Huang, X., Kelleher, N. L. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Current Opinion in Chemical Biology. 33, 142-150 (2016).
  23. Sidoli, S., Garcia, B. A. Middle-down proteomics: a still unexploited resource for chromatin biology. Expert Review of Proteomics. 14 (7), 617-626 (2017).
  24. Stampar, M., et al. Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals. Science of the Total Environment. 755, 143255 (2021).
  25. Calitz, C., et al. Toxicity and anti-prolific properties of Xysmalobium undulatum water extract during short-term exposure to two-dimensional and three-dimensional spheroid cell cultures. Toxicology Mechanisms and Methods. 28 (9), 641-652 (2018).
  26. Garcia, B. A., et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nature Protocols. 2 (4), 933-938 (2007).
  27. Sidoli, S., et al. Sequential window acquisition of all theoretical mass spectra (SWATH) analysis for characterization and quantification of histone post-translational modifications. Molecular and Cellular Proteomics. 14 (9), 2420-2428 (2015).
  28. Sidoli, S., et al. Low resolution data-independent acquisition in an LTQ-orbitrap allows for simplified and fully untargeted analysis of histone modifications. Analytical Chemistry. 87 (22), 11448-11454 (2015).
  29. Karch, K. R., Sidoli, S., Garcia, B. A. Identification and quantification of histone PTMs using high-resolution mass spectrometry. Methods in Enzymology. 574, 3-29 (2016).
  30. Yuan, Z. F., et al. EpiProfile quantifies histone peptides with modifications by extracting retention time and intensity in high-resolution mass spectra. Molecular and Cellular Proteomics. 14 (6), 1696-1707 (2015).
  31. Yuan, Z. F., et al. EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. Journal of Proteome Research. 17 (7), 2533-2541 (2018).
  32. MacLean, B., et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 26 (7), 966-968 (2010).
  33. Pino, L. K., et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrometry Reviews. 39 (3), 229-244 (2020).
  34. Aguilan, J. T., Kulej, K., Sidoli, S. Guide for protein fold change and p-value calculation for non-experts in proteomics. Molecular Omics. 16 (6), 573-582 (2020).
  35. Lex, A., et al. UpSet: Visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics. 20 (12), 1983-1992 (2014).
  36. Shah, S. G., et al. HISTome2: a database of histone proteins, modifiers for multiple organisms and epidrugs. Epigenetics and Chromatin. 13 (1), 31 (2020).
  37. Xie, Z., et al. Lysine succinylation and lysine malonylation in histones. Molecular and Cellular Proteomics. 11 (5), 100-107 (2012).
  38. Liu, J., et al. Histone succinylation and its function on the nucleosome. Journal of Cellular and Molecular Medicine. 25 (15), 7101-7109 (2021).
  39. Howe, F. S., et al. Is H3K4me3 instructive for transcription activation. Bioessays. 39 (1), 1-12 (2017).
  40. Nicetto, D., Zaret, K. S. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Current Opinion in Genetics and Development. 55, 1-10 (2019).
  41. Wojcik, J. B., et al. Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Modern Pathology. 32 (10), 1434-1446 (2019).
  42. Sellers, W. R., et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 569 (7757), 503-508 (2019).
  43. Zhang, D., et al. Metabolic regulation of gene expression by histone lactylation. Nature. 574 (7779), 575-580 (2019).
  44. Farrelly, L. A., et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 567 (7749), 535-539 (2019).
  45. Chen, Q., et al. ADP-ribosylation of histone variant H2AX promotes base excision repair. The EMBO Journal. 40 (2), 104542 (2021).
  46. Zheng, Q., et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications. 10 (1), 1289 (2019).

Play Video

Cite This Article
Joseph-Chowdhury, J. N., Stransky, S., Graff, S., Cutler, R., Young, D., Kim, J. S., Madrid-Aliste, C., Aguilan, J. T., Nieves, E., Sun, Y., Yoo, E. J., Sidoli, S. Global Level Quantification of Histone Post-Translational Modifications in a 3D Cell Culture Model of Hepatic Tissue. J. Vis. Exp. (183), e63606, doi:10.3791/63606 (2022).

View Video