Summary

基于平面激光诱导荧光成像的拍打软鳍变形建模

Published: April 28, 2022
doi:

Summary

本方案涉及测量和表征用聚二甲基硅氧烷(PDMS)材料建造的水下拍打翅片中的3D形状变形。准确重建这些变形对于了解合规拍打翅片的推进性能至关重要。

Abstract

受到各种鱼类鳍的启发的推进机制已被越来越多地研究,因为它们有可能提高无人车辆系统的机动和隐身能力。与更刚性结构相比,这些翅片机构膜中使用的软材料已被证明可以有效地增加推力和效率,但是准确测量和模拟这些软膜中的变形至关重要。本研究提出了一种工作流程,用于使用平面激光诱导荧光(PLIF)表征柔性水下拍打翅片的时间依赖性形状变形。制造具有不同刚度(0.38 MPa和0.82 MPa)的着色聚二甲基硅氧烷翅片膜并将其安装到组件上,以便在两个自由度(俯仰和滚动)中致动。在一系列翼展平面上采集PLIF图像,进行处理以获得翅片变形曲线,并组合以重建时变3D变形翅片形状。然后,这些数据用于为流固耦合仿真提供高保真度验证,并提高对这些复杂推进系统性能的理解。

Introduction

在自然界中,许多鱼类已经进化到使用各种身体和鳍的运动来实现运动。确定鱼类运动原理的研究有助于推动生物启发推进系统的设计,因为生物学家和工程师共同努力为水下航行器开发有能力的下一代推进和控制机制。各个研究小组研究了翅片配置,形状,材料,行程参数和表面曲率控制技术123456789101112.表征尖端涡流产生和尾流倾角对于理解单鳍和多鳍系统中推力产生的重要性已在计算和实验13,14,15,161718的大量研究中得到记录。对于由顺应材料制成的翅片机构,在各种研究中显示,以减少尾流倾斜度和增加推力17,捕获和准确模拟其变形时间史以与流动结构分析配对也是至关重要的。然后,这些结果可用于验证计算模型,为翅片设计和控制提供信息,并促进柔性材料上非定常流体动力载荷的积极研究领域,这需要验证19研究已经对鲨鱼鳍和其他复杂物体20,2122中使用了基于图像的直接高速形状跟踪,但是复杂的3D鳍形状经常阻碍光学访问,使其难以测量。因此,迫切需要一种简单有效的方法来可视化柔性翅片运动。

聚二甲基硅氧烷(PDMS)是一种广泛用于合规翅片机构的材料,因为它成本低,易于使用,改变刚度的能力以及与水下应用的兼容性23,正如Majidi等人的综述中广泛描述的那样除了这些优点之外,PDMS还具有光学透明性,这有利于使用光学诊断技术(如平面激光诱导荧光(PLIF))进行测量。传统上,在实验流体力学25中,PLIF已被用于可视化流体流动,方法是用染料或悬浮颗粒播种流体,或者利用当暴露于激光片26,27,2829时已经在流动中的物质的量子跃迁。这种成熟的技术已被用于研究基本流体动力学,燃烧和海洋动力学2630313233

在本研究中,PLIF用于获得柔性鱼启发的机器人鳍的形状变形的时空分辨测量值。PDMS翅片的水下运动学不是用染料播种流体,而是在各种弦向横截面上可视化。虽然平面激光成像可以在常规的投射PDMS上进行,而无需额外的荧光,但修改PDMS以增强荧光可以通过减少背景元素(例如鳍片安装硬件)的影响来提高图像的信噪比(SNR)。PDMS可以通过采用两种方法来使荧光,通过荧光颗粒播种或色素沉着。据报道,对于给定的零件比率,前者会改变所得铸件PDMS34的刚度。因此,将无毒的市售颜料与透明PDMS混合以铸造用于PLIF实验的荧光翅片。

为了提供使用这些鳍运动学测量进行计算模型验证的示例,然后将实验运动学与鳍的耦合流固耦合(FSI)模型中的值进行比较。计算中使用的 FSI 模型基于使用测量的翅片材料属性计算的前七个特征模态。成功的比较可验证翅片模型,并有信心将计算结果用于翅片设计和控制。此外,PLIF结果表明,该方法可用于在未来研究中验证其他数值模型。关于这些FSI模型的附加信息可以在先前的工作3536 和计算流体动力学方法的基本文本3738中找到。未来的研究还可以同时测量固体变形和流体流动,以改进机器人鳍片,生物启发软机器人和其他应用中的FSI实验研究。此外,由于PDMS和其他兼容弹性体广泛用于各个领域,包括传感器和医疗设备,因此使用该技术可视化柔性固体中的变形可以使工程,物理,生物学和医学领域的更多研究人员受益。

Protocol

1. 翅片制造 根据所需的形状设计构建翅片模具。 设计和构建一个定制的3D打印的翅片形状的光泽成品模具(图1)。请参阅 补充编码文件1-4中用于制造模具的STL文件。 将结构元素插入模具,例如3D打印的刚性塑料前缘翼梁。请参阅 补充编码文件 2 中 spar 的 STL 文件。 以所需的零件比例混合PDMS(参?…

Representative Results

将梯形鱼的人造胸鳍用两种不同的材料(PDMS 10:1和20:1,均与荧光染料混合)从模具中铸造出来,每种材料都有一个刚性的前缘翼梁插入前四分之一弦(图2 和 图3)。两种翅片材料的拉伸测试(图3)分别产生PDMS 20:1和PDMS 10:1翅片的弹性模量(图3),两种测量的R2 分别为0.38 MPa和0.82 MPa(相应的应力 – 应变曲线见 <stron…

Discussion

平面激光诱导荧光通常用于通过用染料播种流体来可视化水流,当暴露于激光片2526时会发出荧光。然而,以前没有报道过使用PLIF来可视化合规材料中的变形,本研究描述了一种使用PLIF获得柔性实心翅片中高分辨率形状变形的时程测量的方法。将这些翅片测量值与 FSI 仿真进行比较,可以验证数值模型,并为使用计算结果进行翅片设计和控制提供进一…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了海军研究办公室通过美国海军研究实验室(NRL)6.2基础计划的支持,并在Kaushik Sampath是NRL声学部门的雇员和Nicole Xu在NRL计算物理和流体动力学实验室担任NRC研究助理奖时进行。作者要感谢Ruben Hortensius博士(TSI Inc.)的技术支持和指导。

Materials

ADMET controller ADMET MTESTQuattro
Axon II Society of Robots Microcontroller for the fin hardware
Berkeley Nucleonics Delay Generator Berkeley Nucleonics Corp Model 525 BNC delay generator and software
BobCat Cam Config Imperx Camera settings software
CCD camera Imperx B2340 4 MegaPixel
COMSOL COMSOL Inc Commercial structural dynamics software for fluid-structure interaction modeling
D646WP Servo Hitec 36646S 32-Bit, Digital, High Torque, Waterproof Servo for the fin pitch rotation
D840WP Servo Hitec 36840S 32-Bit, Multi Purpose, Waterproof, Steel Gear Servo for the fin stroke rotation
Electric Pink fluorescent pigment Silc Pig PMS812C
EverGreen (532 nm dual pulsed Nd:YAG laser system) Quantel EVG00070 Laser head and power supply, 70 mJ
Force transducer ADMET SM-10-961 10 lbf load cell
FrameLink Express Imperx Camera capture software
Longpass fluorescence filter Edmund Optics 560 nm
MATLAB MathWorks Software for image analysis
Planetary centrifugal mixer THINKY MIXER AR-100
Silicone rubber compounds Momentive RTV615 Clear PDMS
Stratasys J750 Stratasys 3D printer, polyjet
Universal testing machine ADMET eXpert 2611 Table top model
VeroBlack Stratasys 3D printer material to build the molds
VeroGray Stratasys 3D printer material to build the molds

References

  1. Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A., Wolfgang, M. J. Drag reduction in fish-like locomotion. Journal of Fluid Mechanics. 392, 183-212 (1999).
  2. Hobson, B. W., Murray, M. M., Pell, C. PilotFish: maximizing agility in an unmanned-underwater vehicle. Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology. 99, 41-51 (1999).
  3. Licht, S., Polidoro, V., Flores, M., Hover, F. S., Triantafyllou, M. S. Design and projected performance of a flapping foil AUV. IEEE Journal of Oceanic Engineering. 29 (3), 786-794 (2004).
  4. Zhou, C., Wang, L., Cao, Z., Wang, S., Tan, M. Design and control of biomimetic robot fish FAC-I. Bio-mechanisms of Swimming and Flying. , 247-258 (2008).
  5. Kato, N., et al. Elastic pectoral fin actuators for biomimetic underwater vehicles. Bio-mechanisms of Swimming and Flying. , 271-282 (2008).
  6. Moored, K. W., Smith, W., Hester, J. M., Chang, W., Bart-Smith, H. Investigating the thrust production of a myliobatoid-inspired oscillating wing. Advances in Science and Technology. 58, 25-30 (2008).
  7. Sitorus, P. E., Nazaruddin, Y. Y., Leksono, E., Budiyono, A. Design and implementation of paired pectoral fins locomotion of labriform fish applied to a fish robot. Journal of Bionic Engineering. 6 (1), 37-45 (2009).
  8. Tangorra, J. L., Lauder, G. V., Hunter, I. W., Mittal, R., Madden, P. G. A., Bozkurttas, M. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. Journal of Experimental Biology. 213 (23), 4043-4054 (2010).
  9. Park, Y. -. J., Jeong, U., Lee, J., Kim, H. -. Y., Cho, K. -. J. The effect of compliant joint and caudal fin in thrust generation for robotic fish. 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. , 528-533 (2010).
  10. Palmisano, J. S., Geder, J. D., Ramamurti, R., Sandberg, W. C., Banahalli, R. Robotic pectoral fin thrust vectoring using weighted gait combinations. Applied Bionics and Biomechanics. 9, 802985 (2012).
  11. Esposito, C. J., Tangorra, J. L., Flammang, B. E., Lauder, G. V. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. Journal of Experimental Biology. 215 (1), 56-67 (2012).
  12. Hannard, F., Mirkhalaf, M., Ameri, A., Barthelat, F. Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials. Science Robotics. 6 (57), (2021).
  13. Lauder, G. V., Madden, P. G. A. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Experiments in Fluids. 43 (5), 641-653 (2007).
  14. Bazaz Behbahani, S., Tan, X. Role of pectoral fin flexibility in robotic fish performance. Journal of Nonlinear Science. 27 (4), 1155-1181 (2017).
  15. Wu, X., Zhang, X., Tian, X., Li, X., Lu, W. A review on fluid dynamics of flapping foils. Ocean Engineering. 195, 106712 (2020).
  16. Park, H., Park, Y. -. J., Lee, B., Cho, K. -. J., Choi, H. Vortical structures around a flexible oscillating panel for maximum thrust in a quiescent fluid. Journal of Fluids and Structures. 67, 241-260 (2016).
  17. Shinde, S. Y., Arakeri, J. H. Flexibility in flapping foil suppresses meandering of induced jet in absence of free stream. Journal of Fluid Mechanics. 757, 231-250 (2014).
  18. Sampath, K., Geder, J. D., Ramamurti, R., Pruessner, M. D., Koehler, R. Hydrodynamics of tandem flapping pectoral fins with varying stroke phase offsets. Physical Review Fluids. 5 (9), 094101 (2020).
  19. Young, Y. L. Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures. 24 (6), 799-818 (2008).
  20. Hughes, B., Burghardt, T. Automated visual fin identification of individual great white sharks. International Journal of Computer Vision. 122 (3), 542-557 (2017).
  21. Watanabe, Y., Komuro, T., Ishikawa, M. 955-fps real-time shape measurement of a moving/deforming object using high-speed vision for numerous-point analysis. Proceedings 2007 IEEE International Conference on Robotics and Automation. , 3192-3197 (2007).
  22. Teng, J., Hu, C., Huang, H., Chen, M., Yang, S., Chen, H. Single-shot 3D tracking based on polarization multiplexed Fourier-phase camera. Photonics Research. 9 (10), 1924 (2021).
  23. Zhang, B., Dong, Q., Korman, C. E., Li, Z., Zaghloul, M. E. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Scientific Reports. 3 (1), 1098 (2013).
  24. Majidi, C. Soft-matter engineering for soft robotics. Advanced Materials Technologies. 4 (2), 1800477 (2018).
  25. Springer. . Springer Handbook of Experimental Fluid Mechanics. , (2007).
  26. Crimaldi, J. P. Planar laser induced fluorescence in aqueous flows. Experiments in Fluids. 44 (6), 851-863 (2008).
  27. Davidson, D. F., Hanson, R. K. Spectroscopic Diagnostics. Handbook of Shock Waves. , 741 (2001).
  28. Academic Press. . Handbook of Shock Waves. , (2001).
  29. Yang, W. J. . Handbook of Flow Visualization. , (2018).
  30. Cowen, E. A., Chang, K. -. A., Liao, Q. A single-camera coupled PTV-LIF technique. Experiments in Fluids. 31 (1), 63-73 (2001).
  31. Hanson, R. K., Seitzman, J. M., Paul, P. H. Planar laser-fluorescence imaging of combustion gases. Applied Physics B Photophysics and Laser Chemistry. 50 (6), 441-454 (1990).
  32. Houghton, I. A., Koseff, J. R., Monismith, S. G., Dabiri, J. O. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column. Nature. 556 (7702), 497-500 (2018).
  33. Mohaghar, M., Webster, D. R. Characterization of non-linear internal waves using PIV/PLIF techniques. 14th International Symposium on Particle Image Velocimetry. 1 (1), (2021).
  34. Yue, Y., Zhang, H., Zhang, Z., Chen, Y. Tensile properties of fumed silica filled polydimethylsiloxane networks. Composites Part A: Applied Science and Manufacturing. 54, 20-27 (2013).
  35. Ramamurti, R., Geder, J., Viswanath, K., Lohner, R., Soto, O. . Coupled CFD, structure and control tool for simulation of flapping wing analysis. , (2019).
  36. Geder, J. D., Ramamurti, R., Sampath, K., Pruessner, M., Viswanath, K. Fluid-structure modeling and the effects of passively deforming fins in flapping propulsion systems. OCEANS 2021: San Diego – Porto. , 1-9 (2021).
  37. Anderson, D. A., Tannehill, J. C., Pletcher, R. H., Ramakanth, M., Shankar, V. . Computational Fluid Mechanics and Heat Transfer. Fourth edition. | Boca. , (2020).
  38. Löhner, R. . Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. , (2008).
  39. D20 Committee. . Test Method for Tensile Properties of Plastics. , (2022).
  40. Bai, K., Katz, J. On the refractive index of sodium iodide solutions for index matching in PIV. Experiments in Fluids. 55 (4), 1704 (2014).

Play Video

Cite This Article
Sampath, K., Xu, N., Geder, J., Pruessner, M., Ramamurti, R. Flapping Soft Fin Deformation Modeling using Planar Laser-Induced Fluorescence Imaging. J. Vis. Exp. (182), e63784, doi:10.3791/63784 (2022).

View Video