Summary

用于缺血再灌注研究的左前降冠状动脉结扎术:通过技术修改和质量控制改进模型

Published: December 16, 2022
doi:

Summary

在本文中,我们提出了一个专注于左前降冠状动脉结扎术的协议,通过技术上修改大鼠的传统程序进行急性心肌缺血再灌注研究。

Abstract

冠心病是全球死亡的主要原因。冠状动脉血流完全停止会导致 ST 段抬高型心肌梗死 (STEMI),导致心源性休克和致死性心律失常,这与高死亡率有关。用于冠状动脉再通的初级冠状动脉介入治疗(PCI)可显著改善STEMI的结局,但在缩短门到球囊时间方面取得的进展未能降低院内死亡率,这表明需要额外的治疗策略。大鼠左前降冠状动脉(LAD)结扎术是急性心肌IR研究的动物模型,与通过PCI进行快速冠状动脉再通治疗STEMI的临床情况相当;然而,PCI 诱导的 STEMI 是一项技术上具有挑战性且复杂的手术,与高死亡率和梗死大小的巨大差异有关。我们确定了LAD结扎的理想位置,创建了一个控制圈套的小工具,并支持修改的手术操作,从而减少组织损伤,为大鼠建立可靠且可重复的急性心肌缺血再灌注(IR)研究方案。这是一种非生存性手术。我们还提出了一种验证研究结果质量的方法,这是确定后续生化分析准确性的关键步骤。

Introduction

缺血性心脏病是全球死亡的主要原因12。除了控制预防冠心病发展的可改变的危险因素外,急性冠脉综合征34也迫切需要治疗策略。已发现急性 ST 段抬高型心肌梗死 (STEMI) 的心源性休克和致死性心律失常会增加院内死亡的可能性5678原发性经皮冠状动脉介入治疗 (PCI) 是 STEMI91011 的首选治疗方法;然而,当门到气球时间为<90分钟1213时,治疗效果有一个上限。需要额外的策略来进一步改善疾病的临床结果14,1516171819

涉及大鼠左前降动脉 (LAD) 结扎术的急性心肌缺血再灌注 (IR) 实验是与临床场景相当的动物模型之一,其中 STEMI 患者需要较短的门到球囊时间才能从缺血性损伤中拯救心脏。然而,手术诱导的小动物STEMI在技术上通常具有挑战性,因为它是一项复杂的手术,与高死亡率和梗死大小的高变化有关20,21222324为了克服技术挑战,本研究开发了一种全面有效的大鼠动物模型(因为它们比小鼠大),通过技术修改建立了可靠且可重复的急性心肌IR研究方案。拟议的方案导致更少的手术并发症,更少的组织损伤,以及手术期间死亡的可能性。此外,还使用一种程序来测量梗死的大小和风险区域(AAR),从而验证研究结果的质量。所提出的方案可用于研究急性心肌IR应激的病理生理过程,以开发针对损害的新治疗策略。

Protocol

所有动物实验均按照美国国立卫生研究院出版的《实验动物护理和使用指南》(NIH出版物编号85-23,1996年修订)进行。该研究方案已获得天主教辅仁大学机构动物护理和使用委员会的批准,并符合其指导方针。 1. 术前准备 盐水湿棉球的制备戴上外科口罩和手套。 捏下一小块无菌棉花,将其卷成球状。重复此过程。 将棉球浸入无菌?…

Representative Results

在心肌缺血和再灌注结束时,应在进一步生化或分子分析之前评估LAD结扎的质量。 通过中心静脉导管注射 1 mL 2% Evan 蓝色染料来确定通过结扎 LAD 阻塞的充分性。然后,与未灌注区域相比,冠状动脉灌注的心肌被染成蓝色,该区域保持红色(图1A)。红色区域是心肌梗死的AAR。 通过量化研究动物中AAR百分比的变化,进一步评估LAD连接…

Discussion

所提出的方案有几个显着的特点,例如识别LAD结扎的确切位置,创建一个小工具来控制单缝合中的圈套环,并支持改进的手术操作以减少组织损伤,从而使研究人员能够准确,安全和一致地连接LAD,以及立即控制圈套的状态以进行急性心肌IR研究。

LAD结扎的位置会影响心肌梗死的面积和大小。通常建议在近端LAD 2728 的一定距离处?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该模型是在台湾科技部(MOST 109-2320-B-030-006-MY3)的资助下开发的。

Materials

Evan’s blue Sigma Aldrich E2129
Forceps Shinva
Pentobarbital Sigma Aldrich 1507002
Scalpel blades Shinva s2646
Scalpel handles Shinva
Silk sutures SharpointTM DC-2150N
Surgical needle AnchorTM
Triphenyltetrazolium chloride (TTC) solution Solarbio T8170-1
Ventilator Harvard Rodent Ventilator

References

  1. Khan, M. A., et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus. 12 (7), 9349 (2020).
  2. Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., Al-Lamee, R. Mortality from ischemic heart disease. Circulation: Cardiovascular Quality and Outcomes. 12 (6), 005375 (2019).
  3. Kuo, F. Y., et al. Effect of CYP2C19 status on platelet reactivity in Taiwanese acute coronary syndrome patients switching to prasugrel from clopidogrel: Switch Study. Journal of the Formosan Medical Association. , (2022).
  4. Li, Y. H., et al. Guidelines of the Taiwan Society of Cardiology, Taiwan Society of Emergency Medicine and Taiwan Society of Cardiovascular Interventions for the management of non ST-segment elevation acute coronary syndrome. Journal of the Formosan Medical Association. 117 (9), 766-790 (2018).
  5. Liu, Y. B., et al. Dyslipidemia is associated with ventricular tachyarrhythmia in patients with acute ST-segment elevation myocardial infarction. Journal of the Formosan Medical Association. 105 (1), 17-24 (2006).
  6. Anghel, L., Sascău, R., Stătescu, C. Myocardial infarction with cardiogenic shock-the experience of a primary PCI center from North-East Romania. Signa Vitae. 17 (5), 64-70 (2021).
  7. Samat, A. H. A., Embong, H., Harunarashid, H., Maskon, O. Predicting ventricular arrhythmias and in-hospital mortality in acute coronary syndrome patients presenting to the emergency department. Signa Vitae. 16 (1), 55-64 (2020).
  8. Wang, Y. C., et al. Outcome of primary percutaneous coronary intervention in octogenarians with acute myocardial infarction. Journal of the Formosan Medical Association. 105 (6), 451-458 (2006).
  9. Markovic, D., et al. Effects of a percutaneous coronary intervention or conservative treatment strategy on treatment outcomes in elderly female patients with acute coronary syndrome. Signa Vitae. 12 (1), 96-100 (2016).
  10. Hannan, E. L., et al. Effect of onset-to-door time and door-to-balloon time on mortality in patients undergoing percutaneous coronary interventions for ST-segment elevation myocardial infarction. American Journal of Cardiology. 106 (2), 143-147 (2010).
  11. McNamara, R. L., et al. Effect of door-to-balloon time on mortality in patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology. 47 (11), 2180-2186 (2006).
  12. Pehnec, Z., Sinkovië, A., Kamenic, B., Marinšek, M., Svenšek, F. Baseline characteristics, time-to-hospital admission and in-hospital outcomes of patients hospitalized with ST-segment elevation acute coronary syndromes, 2002 to 2005. Signa Vitae. 4 (1), 14-20 (2009).
  13. Menees, D. S., et al. Door-to-balloon time and mortality among patients undergoing primary PCI. The New England Journal of Medicine. 369 (10), 901-909 (2013).
  14. Ku, H. C., Chen, W. P., Su, M. J. DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn-Schmiedeberg’s Archives of Pharmacology. 384 (2), 197-207 (2011).
  15. Lee, S. Y., Ku, H. C., Kuo, Y. H., Chiu, H. L., Su, M. J. Pyrrolidinyl caffeamide against ischemia/reperfusion injury in cardiomyocytes through AMPK/AKT pathways. Journal of Biomedical Science. 22 (1), 18 (2015).
  16. Ku, H. C., et al. TM-1-1DP exerts protective effect against myocardial ischemia reperfusion injury via AKT-eNOS pathway. Naunyn-Schmiedeberg’s Archives of Pharmacology. 388 (5), 539-548 (2015).
  17. Ku, H. C., Lee, S. Y., Yang, K. C., Kuo, Y. H., Su, M. J. Modification of caffeic acid with pyrrolidine enhances antioxidant ability by activating AKT/HO-1 pathway in heart. PLoS ONE. 11 (2), 0148545 (2016).
  18. Alonso-Herranz, L., et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFbeta1 after myocardial infarction. eLife. 9, 57920 (2020).
  19. Liu, J., Zheng, X., Zhang, C., Zhang, C., Bu, P. Lcz696 alleviates myocardial fibrosis after myocardial infarction through the sFRP-1/Wnt/beta-catenin signaling pathway. Frontiers in Pharmacology. 12, 724147 (2021).
  20. Goldman, S., Raya, T. E. Rat infarct model of myocardial infarction and heart failure. Journal of Cardiac Failure. 1 (2), 169-177 (1995).
  21. Ke, J., Zhu, C., Zhang, Y., Zhang, W. Anti-arrhythmic effects of linalool via Cx43 expression in a rat model of myocardial infarction. Frontiers in Pharmacology. 11, 926 (2020).
  22. Houde, M., et al. Mouse mast cell protease 4 deletion protects heart function and survival after permanent myocardial infarction. Frontiers in Pharmacology. 9, 868 (2018).
  23. Chen, J., Ceholski, D. K., Liang, L., Fish, K., Hajjar, R. J. Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. American Journal of Physiology-Heart and Circulatory Physiology. 313 (2), 275-282 (2017).
  24. Kainuma, S., et al. Influence of coronary architecture on the variability in myocardial infarction induced by coronary ligation in rats. PLoS ONE. 12 (8), 0183323 (2017).
  25. Heil, J., Schlapfer, M. A reproducible intensive care unit-oriented endotoxin model in rats. Journal of Visualized Experiments. (168), e62024 (2021).
  26. Schleimer, K., et al. Training a sophisticated microsurgical technique: Interposition of external jugular vein graft in the common carotid artery in rats. Journal of Visualized Experiments. (69), e4124 (2012).
  27. Lindsey, M. L., et al. Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology-Heart and Circulatory Physiology. 314 (4), 812-838 (2018).
  28. Li, H., et al. A new model of heart failure post-myocardial infarction in the rat. Journal of Visualized Experiments. (172), e62540 (2021).
  29. Opitz, C. F., Mitchell, G. F., Pfeffer, M. A., Pfeffer, J. M. Arrhythmias and death after coronary artery occlusion in the rat. Continuous telemetric ECG monitoring in conscious, untethered rats. Circulation. 92 (2), 253-261 (1995).
  30. Kawashima, T., Sato, F. Clarifying the anatomy of the atrioventricular node artery. International Journal of Cardiology. 269, 158-164 (2018).
  31. Vikse, J., et al. Anatomical variations in the sinoatrial nodal artery: A meta-analysis and clinical considerations. PLoS ONE. 11 (2), 0148331 (2016).
  32. Xu, Z., Alloush, J., Beck, E., Weisleder, N. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. Journal of Visualized Experiments. (86), e51329 (2014).
  33. Klocke, R., Tian, W., Kuhlmann, M. T., Nikol, S. Surgical animal models of heart failure related to coronary heart disease. Cardiovascular Research. 74 (1), 29-38 (2007).
  34. De Villiers, C., Riley, P. R. Mouse models of myocardial infarction: Comparing permanent ligation and ischemia-reperfusion. Disease Models & Mechanisms. 13 (11), (2020).
  35. Reichert, K., et al. Murine left anterior descending (LAD) coronary artery ligation: An improved and simplified model for myocardial infarction. Journal of Visualized Experiments. (122), e55353 (2017).
  36. Lugrin, J., Parapanov, R., Krueger, T., Liaudet, L. Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. Journal of Visualized Experiments. (150), e59591 (2019).
  37. Wu, Y., Yin, X., Wijaya, C., Huang, M. H., McConnell, B. K. Acute myocardial infarction in rats. Journal of Visualized Experiments. (48), e2464 (2011).
  38. Muthuramu, I., Lox, M., Jacobs, F., De Geest, B. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure. Journal of Visualized Experiments. (94), e52206 (2014).
  39. Langer, K. On the anatomy and physiology of the skin. British Journal of Plastic Surgery. 31 (4), 277-278 (1978).
  40. Carmichael, S. W. The tangled web of Langer’s lines. Clinical Anatomy. 27 (2), 162-168 (2014).
  41. Chang, L. R., Marston, G., Martin, A. Anatomy, Cartilage. StatPearls. , (2022).
  42. Kolk, M. V., et al. LAD-ligation: A murine model of myocardial infarction. Journal of Visualized Experiments. (32), e1438 (2009).

Play Video

Cite This Article
Ku, H., Chien, D., Chao, C., Lee, S. Left Anterior Descending Coronary Artery Ligation for Ischemia-Reperfusion Research: Model Improvement via Technical Modifications and Quality Control. J. Vis. Exp. (190), e63921, doi:10.3791/63921 (2022).

View Video