Summary

ミクロゲルロッドからの連結マクロポーラス3D足場

Published: June 16, 2022
doi:

Summary

相補的な反応性基を有するミクロゲルロッドは、水溶液中で相互連結する能力を有するマイクロフルイディクスを介して製造される。異方性ミクロゲルは、球形ベースのシステムと比較して、より大きな細孔を有する安定した構築物に詰まりそして相互連結する。GRGDS-PCで修飾されたミクロゲルは、細胞培養に使用できるマクロポーラス3Dコンストラクトを形成します。

Abstract

マイクロフルイディクスからの官能化ミクロゲルの2成分系は、追加の添加剤なしで水溶液中の3Dマクロポーラス構造への迅速な相互連結を可能にします。連続的な光開始オンチップゲル化により、得られる構築物のビルディングブロック特性を決定するミクロゲルのアスペクト比の変動が可能になります。グリシジルメタクリレート(GMA)または2-アミノエチルメタクリレート(AMA)モノマーは、エポキシまたはアミン官能基のいずれかを達成するために、ポリエチレングリコール(PEG)スターポリマーに基づくミクロゲルネットワークに共重合されます。集束オイルフローがマイクロ流体出口構造に導入され、官能化されたミクロゲルロッドの連続的な収集が保証されます。最近の出版物に基づいて、ミクロゲルロッドベースの構築物は、数百マイクロメートルの大きな細孔をもたらし、同時に、球ベースのモデルと比較して全体的に高い足場安定性をもたらす。このようにして、必要な材料の量を減らしながら、より多くの自由体積で大量のコンストラクトを製造することが可能です。連結されたマクロポーラス足場は、損傷や崩壊なしにピックアップして輸送することができます。インターリンクに関与しないアミン基とエポキシ基は活性のままであり、後修飾に独立して使用できます。このプロトコルは、その後の細胞実験に利用できるマクロポーラス相互連結足場を形成するためのミクロゲルロッドの製造のための最適化された方法について説明しています。

Introduction

3Dコンストラクトにおける複雑な協調的な細胞挙動を研究するために、足場プラットフォームは、再現性において一貫した性能を示し、細胞移動に適した形状を有し、同時に、生体組織への影響を調査するためのパラメータ変更に関して一定の柔軟性を可能にする必要があります1。近年、Seguraらによって最初に記述されたマクロポーラスアニール粒子(MAP)の概念は、3D足場製造のための効率的で汎用性の高いプラットフォームに発展しました2。最終的な3D足場の構成要素であるミクロゲルのテーラード組成は、構築物の剛性、ゲルネットワークの選択的化学反応性、足場の最終的な細孔サイズなどの特性を事前に定義します2,3,4,5,6。足場-細胞相互作用の手がかりとしての細胞接着ペプチドは、細胞接着を可能にするためにミクロゲルのポリマーネットワークに組み込まれ、培養中の細胞に対するそれらの特異的効果を調べるために変化させることができる。3Dスキャフォールドは、共有結合または超分子結合によるアニールされた注射用ミクロゲルの相互連結によって安定化され、細胞培養のための堅牢で定義された構築物をもたらします2,3,5,7,8

マイクロフルイディクスは、定義された粒状ヒドロゲルを調製するための最も正確で適応可能な方法の1つとしての地位を確立しています9。化学的、機械的、および物理的単分散性を維持しながら、連続プロセスで必要なビルディングブロックを大量に生産する可能性は、このプロセスの適合性に大きく貢献します。さらに、製造されたミクロゲルのサイズおよび形状は、バッチエマルジョン、マイクロ流体工学、リソグラフィー、電気力学的噴霧、または機械的断片化などの様々な方法によって操作することができ、これらはビルディングブロックの形状を決定し、したがって、最終的な足場1,10の3D構造を決定する。

最近、さらなる添加剤なしで水溶液中で急速に連結する官能化されたミクロゲルロッドで構成されるマクロポーラス3D足場の概念が報告されている11。ミクロゲルロッドの異方性は、この研究で球状ミクロゲルを使用した場合と比較して、より高い気孔率とより大きな細孔サイズを持つ細孔分布をもたらしました11。このようにして、材料が少ないほど、3D足場の安定性を維持しながら、さまざまな異なる細孔形状でより大きな細孔が作成されます。このシステムは、互いに接触したときに相互結合反応内で消費される相補的な第一級アミンおよびエポキシ官能基を有する2種類のミクロゲルロッドからなる。インターリンクプロセスに関与しない官能基は活性を維持し、細胞接着ペプチドまたは他の生理活性因子による選択的な後修飾に使用できます。線維芽細胞は、3D足場内で培養すると付着、拡散、増殖し、最初にミクロゲル表面で成長し、5日後にマクロ孔の大部分を満たします。ヒト線維芽細胞とヒト臍帯静脈内皮細胞(HUVEC)の予備共培養研究は、連結された3D足場内に血管様構造を形成するための有望な結果を示した11

Protocol

1. マイクロフルイディクスに必要な材料と調製物 記載されたマイクロ流体手順には、1mLおよび5mLのガラスシリンジおよびシリンジポンプを使用する。オンチップ液滴の形成は、高速度カメラを搭載した倒立顕微鏡で観察されます。 コンピュータ支援設計ソフトウェアを使用してマイクロ流体チップ設計(図1B)を作成し、すでに報告されている…

Representative Results

図2:マクロポーラス架橋足場構造 。 (A)連結マクロポーラス足場の500μm共焦点顕微鏡Zスタックの3D投影。スケールバーは500μmを表す。 (B)水から直接取り出したカバーガラス上の~10,000本のミクロゲル棒からなる連結足場。スケールバーは5m…

Discussion

このプロトコルの重要なステップの1つは、第一級アミン官能基化のコモノマーとして使用される2-アミノエチルメタクリレート(AMA)の品質です。AMAは、気密性の茶色のガラス容器に入れて送達される、きめの細かい、できれば無色の粉末である必要があります。緑がかった塊状の材料は、ゲル化反応を著しく損ない、結果の再現性に悪影響を与えるため、使用しないでください。ゲル化が不?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この方法論が基づいている以前の研究の共著者であるセリーヌ・バスタード、ルイス・P・B・ゲルゾーニ、ヨンカ・キッテル、ロスティスラフ・ヴィノクール、ニコライ・ボルン、タマス・ハラシュティに感謝します。我々は、プロジェクトB5及びC3 SFB 985「機能性ミクロゲル及びミクロゲルシステム」におけるドイツ科学アカデミー(DFG)からの資金提供に感謝の意を表する。我々は、ライプニッツ上院競争委員会(SAW)からの資金提供をProfessorinnenprogramm(SAW-2017-PB62:BioMat)の下で認める。私たちは、欧州委員会(EUSMI、731019)からの資金提供に心から感謝します。この作業は、EUとノルトラインヴェストファーレン州の支援を受けた化学ポリマー技術センター(CPT)で部分的に実施されました(助成金EFRE 30 00 883 02)。

Materials

ABIL EM 90 Evonik 144243-53-8 non-ionic surfactant
2-Aminoethyl methacrylate hydrochloride TCI Chemicals A3413 >98.0%(T)(HPLC)
8-Arm PEG-acrylate 20 kDa Biochempeg Scientific Inc. A88009-20K ≥ 95 %
AutoCAD 2019 Autodesk computer-aided design (CAD) software; modeling of microfluidic designs
CHROMAFIL MV A-20/25 syringe filter CHROMAFILCarl Roth GmbH+Co.KG XH49.1 pore size 0.20 µm; Cellulose Mixed Esters (MV)
Cover glass Marienfeld-Superior type No. 1
EMS Swiss line core sampling tool 0.75 mm Electron Microscopy Sciences 0.77 mm inner diameter, 1.07 mm outer diameter
Ethanol absolut VWR Chemicals
FL3-U3-13Y3M 150 FPS series high-speed camera FLIR Systems
Fluoresceinamine isomer I Sigma-Aldrich 201626
Fluorescein isothiocyanate Thermo Fisher Scientific 46424
25G x 5/8’’ 0,50 x 16 mm needles BD Microlance 3
Glycidyl methacrylate Sigma-Aldrich 779342 ≥97.0% (GC)
GRGDS-PC CPC Scientific FIBN-015A
Hamilton 1000 Series Gastight syringes Thermo Fisher Scientific 10772361/10500052 PFTE Luer-Lock
Hexane Sigma-Aldrich 1,04,367
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate Sigma-Aldrich 900889 ≥95 %
Motic AE2000 trinocular microscope Ted Pella, Inc. 22443-12
Novec 7100 Sigma-Aldrich SHH0002
Oil Red O Sigma-Aldrich O9755
Paraffin VWR Chemicals 24679320
Pavone Nanoindenter Platform Optics11Life
Phosphate buffered saline Thermo Fisher Scientific AM9624
Polyethylene Tubing 0.38×1.09mm medical grade dropletex ID 0.38 mm OD 1.09 mm
2-Propanol Sigma-Aldrich 190764 ACS reagent, ≥99.5%
Protein LoBind Tubes Eppendorf 30108132
Pump 11 Pico Plus Elite Programmable Syringe Pump Harvard Apparatus
RPMI 1640 medium Gibco 11530586
SYLGARD 184 silicone elastomer kit Dow SYLGARD 634165S
Trichloro-(1H,1H,2H,2H-perfluoroctyl)-silane Sigma-Aldrich 448931
UVC LED sterilizing box UVLED Optical Technology Co., Ltd. 9S SZH8-S2

References

  1. Daly, A. C., Riley, L., Segura, T., Burdick, J. A. Hydrogel microparticles for biomedical applications. Nature Reviews Materials. 5 (1), 20-43 (2020).
  2. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature Materials. 14 (7), 737-744 (2015).
  3. Xin, S., Wyman, O. M., Alge, D. L. Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Advanced Healthcare Materials. 7 (11), 1800160 (2018).
  4. Truong, N. F., et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomaterialia. 94, 160-172 (2019).
  5. Sheikhi, A., et al. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials. 192, 560-568 (2019).
  6. de Rutte, J. M., Koh, J., Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Advanced Functional Materials. 29 (25), 1900071 (2019).
  7. Hsu, R. -. S., et al. Adaptable microporous hydrogels of propagating NGF-gradient by injectable building blocks for accelerated axonal outgrowth. Advanced Science. 6 (16), 1900520 (2019).
  8. Caldwell, A. S., Campbell, G. T., Shekiro, K. M. T., Anseth, K. S. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Advanced Healthcare Materials. 6 (15), 1700254 (2017).
  9. Chen, Z., et al. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration. 1 (3), 20210036 (2021).
  10. Qazi, T. H., et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials. 34 (12), 2109194 (2022).
  11. Rommel, D., et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Advanced Science. 9 (10), 2103554 (2022).
  12. Guerzoni, L. P. B., et al. Cell encapsulation in soft, anisometric poly(ethylene) glycol microgels using a novel radical-free microfluidic system. Small. 15 (20), 1900692 (2019).
  13. Krüger, A. J. D., et al. Compartmentalized jet polymerization as a high-resolution process to continuously produce anisometric microgel rods with adjustable size and stiffness. Advanced Materials. 31 (49), 1903668 (2019).
  14. Darling, N. J., et al. Click by click microporous annealed particle (MAP) scaffolds. Advanced Healthcare Materials. 9 (10), 1901391 (2020).
  15. Lutzweiler, G., Ndreu Halili, ., Engin Vrana, N. The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. 12 (7), 602 (2020).
  16. Dang, H. P., et al. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication. 11 (3), 035014 (2019).
  17. Highley, C. B., Song, K. H., Daly, A. C., Burdick, J. A. Jammed microgel inks for 3D printing applications. Advanced Science. 6 (1), 1801076 (2019).
check_url/kr/64010?article_type=t

Play Video

Cite This Article
Rommel, D., Vedaraman, S., Mork, M., De Laporte, L. Interlinked Macroporous 3D Scaffolds from Microgel Rods. J. Vis. Exp. (184), e64010, doi:10.3791/64010 (2022).

View Video