Summary

使用造血细胞因子接种肿瘤的实验性黑色素瘤免疫治疗模型

Published: February 24, 2023
doi:

Summary

该协议提出了一种癌症免疫治疗模型,使用表达Flt3L的B16-F10黑色素瘤进行基于细胞的肿瘤疫苗接种。该协议演示了程序,包括培养的肿瘤细胞的制备,肿瘤植入,细胞照射,肿瘤生长的测量,肿瘤内免疫细胞的分离和流式细胞术分析。

Abstract

Fms样酪氨酸激酶3配体(Flt3L)是一种造血细胞因子,可促进树突状细胞(DC)的存活和分化。它已被用于肿瘤疫苗中,以激活先天免疫并增强抗肿瘤反应。该协议展示了使用基于细胞的肿瘤疫苗的治疗模型,该疫苗由表达Flt3L的B16-F10黑色素瘤细胞以及肿瘤微环境(TME)中免疫细胞的表型和功能分析组成。描述了培养的肿瘤细胞制备、肿瘤植入、细胞照射、肿瘤大小测量、肿瘤内免疫细胞分离和流式细胞术分析的程序。该方案的总体目标是提供一个临床前实体瘤免疫治疗模型,以及一个研究肿瘤细胞与浸润免疫细胞之间关系的研究平台。这里描述的免疫治疗方案可以与其他治疗方式相结合,例如免疫检查点阻断(抗CTLA-4,抗PD-1,抗PD-L1抗体)或化疗,以提高黑色素瘤的癌症治疗效果。

Introduction

癌症免疫疗法因其毒性副作用较小和反应更持久而被认为是一种有前途的治疗策略。已经开发了几种类型的免疫疗法,包括溶瘤病毒疗法、癌症疫苗、细胞因子疗法、单克隆抗体、过继细胞转移(CAR-T 细胞或 CAR-NK)和免疫检查点阻断1

对于癌症疫苗,有不同形式的治疗性疫苗,例如基于全细胞的疫苗,蛋白质或肽疫苗以及RNA或DNA疫苗。疫苗接种依赖于抗原呈递细胞(APC)处理肿瘤抗原(包括肿瘤特异性抗原)并将其以免疫原性形式呈递给T细胞的能力。树突状细胞(DC)已知是最有效的APC,被认为在抗肿瘤免疫中起重要作用23。这些细胞吸收并处理肿瘤抗原,然后迁移到引流淋巴结(dLN),通过T细胞受体(TCR)和共刺激分子的参与来启动和激活肿瘤特异性T效应(Teff)细胞。这导致肿瘤特异性细胞毒性T细胞(CTL)的分化和扩增,CTL浸润肿瘤并杀死肿瘤细胞4。因此,DC的活化和成熟代表了刺激肿瘤抗原免疫的有吸引力的策略。

已知 Flt3L 可促进表达 MHC II 类、CD11c、DEC205 和 CD86 蛋白的功能成熟 DC 的成熟和扩增5。肿瘤内而非静脉内给药含有 Flt3L 基因 (Adv-Flt3L) 的腺病毒载体已被证明可促进针对口位肿瘤的免疫治疗活性6。Flt3L还被用于基于肿瘤细胞的疫苗,该疫苗由稳定表达逆转录病毒转导的Flt3L的辐照B16-F10细胞组成,作为增强DC对肿瘤抗原交叉呈递的一种方式,从而增加抗肿瘤反应。这里描述的B16-Flt3L肿瘤疫苗接种方案基于James Allison博士的第7组发表的一项研究。在本文中,他们报告说,B16-Flt3L疫苗与CTLA-4阻断相结合,协同诱导对已建立的黑色素瘤的排斥反应,从而提高生存率。

该协议的目标是为黑色素瘤提供临床前免疫治疗模型。这里描述了如何制备和植入肿瘤疫苗的详细程序,以及如何分析实体瘤肿瘤内免疫细胞的组成和功能。

Protocol

研究中使用的所有小鼠均在受控温度和湿度的特定无病原体条件下维持并饲养在拉霍亚免疫学研究所(LJI)的动物饲养室中。根据LJI动物护理委员会批准的指南和方案,对8-14周龄的雌性C57BL / 6小鼠进行动物实验。 1.培养的肿瘤细胞植入用的制备 在含有 10% 热灭活 FBS、2 mM 谷氨酰胺、1 mM 丙酮酸钠、1 mM MEM 非必需氨基酸以及青霉素和链霉素各 100 U/mL 的 Ico 改…

Representative Results

植入的B16-F10细胞的可见黑点通常在肿瘤植入后~3天在皮肤表面观察到。在肿瘤结节达到≥2mm大小后3,6和9天用肿瘤疫苗治疗小鼠。我们观察到接种疫苗的小鼠组在肿瘤植入后~2周的肿瘤生长显着减少(图1)。在实验结束时,我们分离了肿瘤内免疫细胞,并分析了它们的数量和细胞表面标志物表达,以及如上所述的短暂体外刺激后的细胞因子产生。从白细胞层收集的细?…

Discussion

这里描述的协议是基于Allison小组的研究。他们证明,B16-Flt3L疫苗与CTLA-4阻断的组合对存活率和肿瘤生长显示出协同作用,而在单独接受B16-Flt3L疫苗或抗CTLA-4抗体治疗的小鼠中没有观察到肿瘤生长减少7。最近的研究揭示了一种新型的Treg内在CTLA4-PKCη信号通路,该通路在调节Treg11的接触依赖性抑制活性中起着重要的强制性作用。单独使用B16-Flt3L疫苗治疗或具有Treg?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Stephen Schoenberger博士提供B16-Flt3L细胞,并感谢LJI动物和流式细胞术设施的工作人员提供出色的支持。

Materials

0.25% trypsin-EDTA  Gibco 25200-056
10% heat-inactivated FBS Omega Scientific FB-02  Lot# 209018
30G needle BD Biosciences 305106
96 well V-shape-bottom plate SARSTEDT 83.3926.500
B16 cell line expressing Fms-like tyrosine kinase 3 ligand (B16-Flt3L) Gift of Dr. Stephen Schoenberger, LJI  Flt3L cDNAs were cloned into the pMG-Lyt2 retroviral vector, as in refernce 5, Supplemental Figure 1
B16-F10 cell lines ATCC CRL-6475
Centrifuge 5810R Eppendorf
Cytofix fixation buffer  BD Biosciences BDB554655 Cell fixation buffer (4.2% PFA) 
Cytofix/Cytoperm kit  BD Biosciences 554714 Fixation/Permeabilization Solution Kit
DNase I Sigma 11284932001
Dulbecco's Modified Eagle Medium  (DMEM)  Corning 10013CV
Electronic digital caliper Fisherbrand 14-648-17
FlowJo software  Tree Star Flow cytometer data analysis
GolgiStop (protein transport inhibitor) BD Biosciences 554724 1:1500 dilution
HEPES (1M) Gibco 15630-080
Ionomycin Sigma I0634
Iscove’s modified Dulbecco’s medium (IMDM) Thermo Fisher 12440053
LSR-II cytometers  BD Biosciences Flow cytometer
MEM nonessential amino acids Gibco 11140-050
penicillin and streptomycin  Gibco 15140-122
Percoll  GE Healthcare Life Sciences GE17-0891-02 density gradient specific medium
PMA Sigma P1585
Red Blood Cell Lysing Buffer Hybri-Max liquid Sigma R7757-100ML
RPMI 1640 medium Corning 10-040-CV
RS2000 X-ray Irradiator Rad Source Technologies
sodium pyruvate Gibco 11360-070
Sterile cell strainer 40 μm Fisherbrand 22-363-547
Sterile cell strainer 70 μm Fisherbrand 22-363-548
TL Liberase Roche 477530
Zombie Aqua fixable viability kit BioLegend 423101
Antibodies
Anti-mCD45 BioLegend 103135 Clone: 30-F11
Fluorophore: BV570
Dilution: 1:200
Anti-mCD3ε BioLegend 100327 Clone: 145-2C11
Fluorophore: PerCP-Cy5.5
Dilution: 1:200
Anti-mCD8 BioLegend 100730
100724
Clone: 53-6.7
Fluorophore: Alexa Fluor 700, Alexa Fluor 647
Dilution: 1:200
Anti-mCD4 BioLegend 100414 Clone: GK1.5
Fluorophore: APC-Cy7
Dilution: 1:200
Anti-mFoxp3 Thermo Fisher Scientific 11577382 Clone: FJK-16s
Fluorophore: FITC
Dilution: 1:100
Anti-m/hGzmB BioLegend 372208 Clone: QA16A02
Fluorophore: PE
Dilution: 1:100
Anti-mIFNg BioLegend 505826 Clone: XMG1.2
Fluorophore: PE-Cy7
Dilution: 1:100
Anti-mCD19 BioLegend 115543 Clone: 6D5
Fluorophore: BV785
Dilution: 1:100
Anti-mGr1 BioLegend 108423 Clone: RB6-8C5
Fluorophore: APC/Cy7
Dilution: 1:200
Anti-mCD11b BioLegend 101223 Clone: M1/70
Fluorophore: Pacific blue
Dilution: 1:100
Anti-mF4/80 BioLegend 123114 Clone: BM8
Fluorophore: PECy7
Dilution: 1:100
Anti-mCD11c BioLegend 117328 Clone: N418
Fluorophore: PerCP Cy5.5
Dilution: 1:100
Anti-mMHCII BioLegend 107622 Clone: M5/114.15.2
Fluorophore: AF700
Dilution: 1:400
Anti-mCD103 BioLegend 121410 Clone: 2E7
Fluorophore: Alexa Fluor 647
Dilution: 1:200
Anti-mCD86 BioLegend 105007 Clone: GL-1
Fluorophore: PE
Dilution: 1:200
FC-blocker (Rat anti-mouse CD16/CD32) BD Biosciences 553141 Clone: 2.4G2
Dilution: 1:200

References

  1. Zhang, Y., Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell & Molecular Immunology. 17 (8), 807-821 (2020).
  2. Banchereau, J., Steinman, R. M. Dendritic cells and the control of immunity. Nature. 392 (6673), 245-252 (1998).
  3. Banchereau, J., et al. Immunobiology of dendritic cells. Annual Review of Immunology. 18, 767-811 (2000).
  4. Martinez-Lostao, L., Anel, A., Pardo, J. How do cytotoxic lymphocytes kill cancer cells. Clinical Cancer Research. 21 (22), 5047-5056 (2015).
  5. Maraskovsky, E., et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. Journal of Experimental Medicine. 184 (5), 1953-1962 (1996).
  6. Talmadge, J. E., et al. Intratumoral, injection of adenoviral Flt3 ligand has therapeutic activity in association with increased intratumoral levels of T cells but not dendritic cells. Blood. 104 (11), 5280 (2004).
  7. Curran, M. A., Allison, J. P. Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. American Association for Cancer Research. 69 (19), 7747-7755 (2009).
  8. Simon, S. R., Ershler, W. B. Hormonal influences on growth of B16 murine melanoma. Journal of the National Cancer Institute. 74 (5), 1085-1088 (1985).
  9. Broz, M. L., et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 26 (6), 938 (2014).
  10. Salmon, H., et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 44 (4), 924-938 (2016).
  11. Liu, H. Y., et al. Leveraging the Treg-intrinsic CTLA4-PKCeta signaling pathway for cancer immunotherapy. Journal for Immunotherapy Cancer. 9 (9), 002792 (2021).
  12. Kong, K. F., et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nature Immunology. 15 (5), 465-472 (2014).
check_url/kr/64082?article_type=t

Play Video

Cite This Article
Liu, H. Y., Altman, A., Canonigo-Balancio, A. J., Croft, M. Experimental Melanoma Immunotherapy Model Using Tumor Vaccination with a Hematopoietic Cytokine. J. Vis. Exp. (192), e64082, doi:10.3791/64082 (2023).

View Video