Summary

测试通过微流控混合配制的mRNA-脂质纳米颗粒的 体外体内 效率

Published: January 20, 2023
doi:

Summary

在这里,提出了一种用于配制脂质纳米颗粒(LNP)的方案,该脂质纳米颗粒封装编码萤火虫荧光素酶的mRNA。这些 LNP 在体外 HepG2 细胞和体内 C57BL/6 小鼠中测试 了它们的效力。

Abstract

最近,随着 Moderna 和辉瑞/BioNTech 成功开发 COVID-19 mRNA 疫苗,脂质纳米颗粒 (LNP) 引起了广泛关注。这些疫苗证明了mRNA-LNP疗法的疗效,并为未来的临床应用打开了大门。在 mRNA-LNP 系统中,LNP 作为递送平台,保护 mRNA 货物免受核酸酶降解并介导其细胞内递送。LNP 通常由四种组分组成:可电离脂质、磷脂、胆固醇和脂质锚定聚乙二醇 (PEG) 偶联物 (lipid-PEG)。在这里,通过微流控混合含有LNP脂质成分的有机相和含有mRNA的水相来制备封装编码萤火虫荧光素酶的mRNA的LNP。然后使用基于生物发光板的测定法在体外测试这些 mRNA-LNP,以评估它们在 HepG2 细胞中的转染效率。此外,在通过侧尾静脉静脉注射后,C57BL / 6小鼠中在体内评估mRNA-LNP。全身生物发光成像是通过使用体内成像系统进行的显示了 mRNA-LNP 特性、它们在 HepG2 细胞中的转染效率以及 C57BL/6 小鼠中的总发光通量的代表性结果。

Introduction

近年来,脂质纳米颗粒(LNPs)在非病毒基因治疗领域展现出巨大的前景。2018 年,美国食品和药物管理局 (FDA) 批准了有史以来第一个 RNA 干扰 (RNAi) 疗法 Onpattro by Alnylam,用于治疗遗传性转甲状腺素蛋白淀粉样变性 1,2,3,4。这是脂质纳米颗粒和基于RNA的疗法向前迈出的重要一步。最近,Moderna 和辉瑞/BioNTech 的 mRNA-LNP 疫苗获得了 FDA 批准,用于对抗 SARS-CoV-2 4,5。在每一种基于 LNP 的核酸疗法中,LNP 都有助于保护其货物免受核酸酶降解,并促进有效的细胞内递送 6,7。虽然 LNP 在 RNAi 疗法和疫苗应用中取得了成功,但 mRNA-LNP 也被探索用于蛋白质替代疗法8 以及 Cas9 mRNA 的共同递送和引导 RNA 的递送,用于递送用于基因编辑的 CRISPR-Cas9 系统9。然而,没有一种特定的制剂适合所有应用,LNP制剂参数的细微变化会极大地影响体内的效力和生物分布8,10,11。因此,必须开发和评估单个 mRNA-LNP,以确定每种基于 LNP 的疗法的最佳配方。

LNP 通常由四种脂质成分配制而成:可电离脂质、磷脂、胆固醇和脂质锚定聚乙二醇 (PEG) 偶联物 (lipid-PEG)11,12,13。LNP促进的有效细胞内递送部分依赖于可电离脂质成分12。该成分在生理pH值下呈中性,但在内体11的酸性环境中带正电。离子电荷的这种变化被认为是内体逃逸的关键因素12,14,15。除了可电离脂质外,磷脂(辅助脂质)成分还改善了货物的包封并有助于内体逃逸,胆固醇提供稳定性并增强膜融合,脂质-PEG 最大限度地减少循环中 LNP 聚集和调理作用10,11,14,16.为了配制LNP,将这些脂质成分结合在有机相(通常是乙醇)中,并与含有核酸货物的水相混合。LNP配方工艺用途广泛,因为它允许以不同的摩尔比轻松替换和组合不同的组分,以配制许多具有多种物理化学性质的LNP配方10,17。然而,在探索种类繁多的LNP时,至关重要的是,必须使用标准化程序对每种配方进行评估,以准确测量表征和性能的差异。

本文概述了mRNA-LNP的配方及其在细胞和动物中性能评估的完整工作流程。

Protocol

注意:在配制 mRNA-LNP 时,始终保持无 RNase 条件,方法是用 RNase 和 DNA 的表面去污剂擦拭表面和设备。仅使用不含 RNase 的吸头和试剂。 所有动物程序均按照宾夕法尼亚大学的《实验动物护理和使用指南》和宾夕法尼亚大学机构动物护理和使用委员会(IACUC)批准的协议进行。 1.制剂前准备 用 200-300 mL 新鲜的 10x 磷酸盐缓冲盐水 (PBS) …

Representative Results

mRNA-LNPs采用微流控仪器配制,其平均流体动力学直径为76.16 nm,多分散指数为0.098。通过进行 TNS 测定,发现 mRNA-LNP 的 pKa 为 5.7518。使用改良荧光测定法和 方程式 4.4 计算出这些 mRNA-LNP 的包封效率为 92.3%。用于细胞处理和动物给药的总RNA浓度为40.24 ng/μL。该值是从改良的荧光测定19中获得的,特别是通过将用1%Triton X-100和1x TE缓冲液稀?…

Discussion

通过该工作流程,可以配制和测试各种mRNA-LNP的体外体内效率。可电离脂质和赋形剂可以以不同的摩尔比和不同的可电离脂质与mRNA重量比进行交换和组合,以产生具有不同物理化学性质的mRNA-LNPs22。在这里,我们配制了摩尔比为 35/16/46.5/2.5(可电离脂质:辅助脂质:胆固醇:脂质-PEG)的 C12-200 mRNA-LNP,可电离脂质与 mRNA 重量比为 10:1。这些 LNP 在体外 HepG2 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

M.J.M. 感谢美国国立卫生研究院 (NIH) 主任新创新者奖 (DP2 TR002776)、科学界面 (CASI) 的 Burroughs Wellcome 基金职业奖、美国国家科学基金会职业奖 (CBET-2145491) 以及美国国立卫生研究院(NCI R01 CA241661、NCI R37 CA244911 和 NIDDK R01 DK123049)的额外资助。

Materials

0.1 M Hydrochloric Acid Sigma 7647-01-0
0.22 μm Syringe Filters Genesee 25-243
1 mL BD Slip Tip Syringe BD 309659
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (C14-PEG2000) Avanti Polar Lipids 880150P
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) Avanti Polar Lipids 850725P
1.5 mL Eppendorf Tubes Fisher Scientific 05-408-129
15 mL Conical Tubes Fisher Scientific 14-959-70C
200 proof Ethanol Decon Labs 2716
23G Needles Fisher Scientific 14-826-6C
3 mL BD Disposable Syringes with Luer-Lok tips Fisher Scientific 14-823-435
3 mL Dialysis Cassettes Thermo Scientific A52976
96 Well Black Wall Black Bottom Plate Fisher Scientific 07-000-135
96 Well White/Clear Bottom Plate, TC Surface Thermo Scientific 165306
Ammonium Acetate, 1 Kilogram Research Products International  631-61-8
Ammonium Citrate dibasic SIgma 3012-65-5
BD Luer-Lok Syringe sterile, single use, 5 mL BD 309646
C12-200 Ionizable Lipid Cayman Chemical 36699
C57BL/6 Mice Jackson Laboratory 000664
Cholesterol Sigma 57-88-5
CleanCap FLuc mRNA (5moU) TriLink Biotechnologies L-7202
Disposable cuvettes Fisher Scientific 14955129
D-Luciferin, Potassium Salt Thermo Scientific L2916
DMEM, high glucose Thermofisher Scientific 11965-084
Exel Insulin Syringes – 0.5 mL Fisher Scientific 1484132
Fetal Bovine Serum Corning 35-010-CV
Hep G2 [HEPG2] ATCC HB-8065
HyPure Molecular Biology Grade Water Cytiva SH30538.03
Infinite 200 PRO Plate Reader Tecan N/A
IVIS Spectrum In Vivo Imaging System Perkin Elmer N/A
Large Kimwipes Fisher Scientific 06-666-11D
Luciferase Assay Kit Promega E4550
NanoAssemblr Ignite Cartridges – Classic – 100 Pack Precision Nanosystems NIN0065
NanoAssemblr Ignite Instrument Precision Nanosystems NIN0001
PBS – Phosphate-Buffered Saline (10x) pH 7.4, RNase-free Thermo Scientific AM9624
Penicillin-Streptomycin Thermofisher Scientific 15140122
QB Citrate Buffer, (Citrate 100 mM) pH 3.0 Teknova Q2442
Quant-it RiboGreen RNA Assay Kit Thermo Scientific R11490
Reporter Lysis 5x Buffer Promega E3971
RNase Away Surface Decontaminant Thermofisher Scientific 7000TS1
Sodium Chloride Sigma 7647-14-5
Sodium Hydroxide Sigma 1310-73-2
Sodium Phosphate Sigma 7601-54-9
TNS reagent (6-(p-Toluidino)-2-naphthalenesulfonic acid sodium salt) Sigma T9792
Triton X-100 Sigma 9036-19-5
Zetasizer Malvern Panalytical NanoZS

References

  1. Cheng, Q., et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology. 15 (4), 313-320 (2020).
  2. Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nature Reviews Neurology. 14 (9), 509 (2018).
  3. Zhang, X., Goel, V., Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients With hereditary transthyretin-mediated amyloidosis. Journal of Clinical Pharmacology. 60 (5), 573-585 (2019).
  4. Shepherd, S. J., et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Letters. 21 (13), 5671-5680 (2021).
  5. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R., Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnology. 40 (6), 840-854 (2022).
  6. Mukalel, A. J., Riley, R. S., Zhang, R., Mitchell, M. J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Letters. 458, 102-112 (2019).
  7. Akhtar, S. Oral delivery of siRNA and antisense oligonucleotides. Journal of Drug Targeting. 17 (7), 491-495 (2009).
  8. Guimaraes, P. P. G., et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release. 316, 404-417 (2019).
  9. Qiu, M., et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proceedings of the National Academy of Sciences of the United States of America. 118 (10), 2020401118 (2021).
  10. Zhang, R., et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomaterials Science. 9 (4), 1449-1463 (2021).
  11. El-Mayta, R., et al. A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids. Advanced Therapeutics. 4 (1), 2000111 (2021).
  12. Patel, S., et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nature Communications. 11, 983 (2020).
  13. Kulkarni, J. A., et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine: Nanotechnology, Biology, and Medicine. 13 (4), 1377-1387 (2017).
  14. Cheng, X., Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews. 99, 129-137 (2016).
  15. Varkouhi, A. K., Scholte, M., Storm, G., Haisma, H. J. Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release. 151 (3), 220-228 (2011).
  16. Granot, Y., Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Seminars in Immunology. 34, 68-77 (2017).
  17. Gan, Z., et al. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands. Bioengineering and Translational Medicine. 5 (3), 10161 (2020).
  18. Patel, S. K., et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. Journal of Controlled Release. 347, 521-532 (2022).
  19. Robinson, E., et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Molecular Therapy. 26 (8), 2034-2046 (2018).
  20. Love, K. T., et al. Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America. 107 (5), 1864-1869 (2010).
  21. Kauffman, K. J., et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters. 15 (11), 7300-7306 (2015).
  22. Billingsley, M. M., et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Letters. 20 (3), 1578-1589 (2020).
  23. Ramaswamy, S., et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proceedings of the National Academy of Sciences of the United States of America. 114 (10), 1941-1950 (2017).
  24. Leung, A. K. K., et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. Journal of Physical Chemistry C. 116 (34), 18440-18450 (2012).
  25. Billingsley, M. M., et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Letters. 22 (1), 533-542 (2022).
  26. Khalil, A. A., et al. Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice. ISRN Molecular Imaging. 2013, 689279 (2013).
  27. Qin, J., et al. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Advances. 12 (39), 25397-25404 (2022).
  28. Pardi, N., et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release. 217, 345-351 (2015).
  29. Finn, J. D., et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports. 22 (9), 2227-2235 (2018).
  30. Truong, B., et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proceedings of the National Academy of Sciences of the United States of America. 116 (42), 21150-21159 (2019).
  31. Cheng, Q., et al. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Advanced Materials. 30 (52), 1805308 (2018).
  32. Sedic, M., et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Veterinary Pathology. 55 (2), 341-354 (2018).
  33. Veiga, N., et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nature Communications. 9 (1), 4493 (2018).
  34. Pattipeiluhu, R., et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Advanced Materials. 34 (16), 2201095 (2022).
  35. Rosenblum, D., et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances. 6 (47), (2020).
  36. Fenton, O. S., et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Advanced Materials. 28 (15), 2939-2943 (2016).
  37. Kauffman, K. J., et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters. 15 (11), 7300-7306 (2015).
  38. Tombácz, I., et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Molecular Therapy. 29 (11), 3293-3304 (2021).
  39. Kim, J., et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. Nano. 9 (9), 14792-14806 (2022).
  40. Bevers, S., et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Molecular Therapy. 30 (9), 3078-3094 (2022).
check_url/kr/64810?article_type=t

Play Video

Cite This Article
El-Mayta, R., Padilla, M. S., Billingsley, M. M., Han, X., Mitchell, M. J. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing. J. Vis. Exp. (191), e64810, doi:10.3791/64810 (2023).

View Video