Summary

Isolation, Behavioral Identification, and Pathogenicity Assessment of Entomopathogenic Fungi from a Forest Wood Borer

Published: September 29, 2023
doi:

Summary

Here we present a protocol for obtaining entomopathogenic fungi from a forest wood borer and a substitutive way to evaluate their entomopathogenic activities using a Coleopteran model insect. This method is efficient and convenient for exploring entomopathogenic fungal resources from wood-boring insect pests in natural forests.

Abstract

Forest wood borers (FWB) cause severe tree damage and economic losses worldwide. The release of entomopathogenic fungi (EPF) during the FWB emergence period is considered an acceptable alternative to chemical control. However, EPF resources have been significantly less explored for FWBs, in contrast to agricultural insect pests. This paper presents a protocol for exploring EPF resources from FWBs using wild Monochamus alternatus populations as an example. In this protocol, the assignment of traps baited with M. alternatus attractants to different populations guaranteed the collection of adequate samples with natural infection symptoms, during the emergence periods of the beetle. Following finely dissecting integuments and placing them onto a selective medium, fungal species were isolated from each part of beetle bodies and identified based on both molecular and morphological traits.

Several fungal species were certified as parasitic EPFs via re-infection of healthy M. alternatus with spore suspensions. Their behavioral phenotypes on M. alternatus were observed using scanning electron microscopy and further compared with those on the Coleopteran model insect Tribolium castaneum. For EPFs that present consistent parasitism phenotypes on both beetle species, evaluation of their activities on T. castaneum provided valuable information on lethality for future study on M. alternatus. This protocol helped the discovery of EPF newly reported on M. alternatus populations in China, which could be applied as an efficient approach to explore more EPF resources from other FWBs.

Introduction

The devastation caused by insect pests has led to great ecological and economic losses in both forest and agricultural ecosystems. Most agricultural pests expose themselves to natural enemies or artificial control agents while damaging host plants. Instead, forest wood borers (FWB) nearly complete their whole developmental cycles inside host tree trunks1, which raises large challenges to explore efficient biocontrol organisms from FWB in the wild field. What is even worse is that FWBs carry a great number of phytopathogens2 or have an intimate relationship with these pathogens as their potential vectors3,4, dramatically amplifying the negative effects of FWB on forest health. Excessive use of chemical insecticides can alleviate FWB severity, but the emergence of insecticidal resistance5,6 limits their environmental application. In certain cases, insect parasitoids, predatory arthropods as well as entomopathogenic microbes were released as biocontrol agents to the distribution areas of FWB7 and were proven to be efficient and economically acceptable alternatives to chemical control8,9,10.

Entomopathogenic fungi (EPF) are regarded to have the advantage in controlling FWB over most other microbial groups. Their spores can be carried by insect hosts and stably fixed on body surfaces via penetration into the cuticle or integument8,11. EPF also present excellent adaptability to environmental stresses and some species colonize well in the tissue of trees as endophytes12,13, facilitating their growth, survival, and transmission. However, compared to that in agricultural industries, the species diversity of EPF used in natural forest ecosystems is remarkably restricted14,15,16. Beauveria bassiana (strain PPRI 5339) was evidenced as the most promising strain to promote an IPM program to Eucalyptus weevils in South Africa17 and the combination of two promising isolates of B. bassiana provided an opportunity for the practical microbial control of red palm weevil, Rhynchophorus ferrugineus, at different life stages in palm tree fields18. In addition to Beauveria and the well-known Metarhizium, other EPF genera of the order Hypocreales, especially species of Lecanicillium (many of which are now classified into the genus Akanthomyces19,20), showed strong pathogenicity and high potential in management of forest pests, such as the Cypress aphid in Chile21.

The pine sawyer beetle Monochamus alternatus is a notorious pine forest pest in China and neighboring countries, which burrows into branches and trunks of pine trees to impede the transportation of nutrients and water22,23,24. Moreover, M. alternatus also promotes the invasion of the plant-parasitic pine wood nematode (Bursaphelenchus xylophilus, PWN) as its main vector beetle. Another congeneric species of the beetle, M. galloprovincialis, has spread PWN in several countries in Europe in recent years25. Previous research reported several genera of natural EPFs from Monochamus spp., such as Beauveria, Metarhizium, and Lecanicillium (Verticillium, an even former name of Lecanicillium), in Spain, Japan, and the Anhui/Zhejiang Provinces of China26,27,28,29. Nevertheless, these collections of EPFs seem to be commonly restricted in a certain location, compared to the wide occurrence of Monochamus beetles in natural fields. As the M. alternatus beetle has a wide geographical distribution in China, it could be regarded as a representative wood borer to explore more potential EPFs across different populations.

In the present protocol, we introduce a specific procedure exploring EPFs from several geographical populations of M. alternatus in southern China. This protocol uses a model Coleopteran beetle as a substitute to perform entomopathogenicity assays, under the condition that the tested fungal species has a consistent behavioral phenotype on both beetle species. This protocol can also provide insights into EPF exploration for other forest wood borers, in which the diversity of their entomopathogenic fungal species is underestimated or less investigated.

Protocol

1. Isolation of fungi from M. alternatus (Figure 1) Collect the beetle sample Collect the pines sawyer beetles M. alternatus using commercial traps (see Table of Materials) baited with attractants before the predicted emergence periods of the beetle populations in naturally infected pine forests. NOTE: In this study, beetles were collected from five geographical regions of southern …

Representative Results

Isolation and identification of fungal isolates from M. alternatus With the aid of attractant traps, a large number (approximately 500 beetles in total) of M. alternatus were collected from five geographical regions. Beetle cadavers with typical symptoms of infection by entomopathogenic fungi were picked; then, body integuments of every beetle were dissected into several positions as described in protocol step 1.3. As a result, more than 600 fungal isolates were …

Discussion

Different geographical populations of FWB may develop varied interactions with the natural entomopathogenic fungi, due to long-term environmental adaptation of EPF species to local climate factors and the specific genotypic population of the host insect44,45. Expansion of the sampling sites to multiple insect occurrence regions helps increase the possibility of acquiring diverse strains or species of EPF from their natural hosts, as described by previous studies …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2021YFC2600100) and the Natural Science Foundation of Zhejiang Province (LY21C040001).

Materials

1.5 mL, 2 mL centrifuge tubes Biosharp BS-15-M
10 µL pipet tips Sangon Biotech F601216
10 µL, 20 µL, 100 µL, 200 µL, 1,000 µL pipettes Rainin
1,000 µL pipet tips Sangon Biotech F630102
2 mL cryogenic vials Corning 430659
20x PBS buffer Sangon Biotech B548117-0500
200 µL pipet tips Sangon Biotech F601227
2,000 bp maker TaKaRar SD0531
50 mL tubes Nest 602052
50% glutaraldehyde solution Sangon Biotech G916054
50x TAE buffer Sangon Biotech B548101
6x loading buffer TaKaRar SD0503
Agarose Sangon Biotech A610013
Anhydrous ethanol Jkchemical LB10V37
Biochemistry Cultivation Cabinet Shanghaiyiheng LRH-250F
Chloroform Juhua 61553
Commercial beetle traps FEIMENGDI BF-8 www.yinyouji.com
Gel imager Bio-Rad GelDoc XR+
Glycerol Sangon Biotech A600232
High speed refrigerated centrifuge Sigma D-37520
High-Pressure Steam Sterilization Pot Mettler Toledo JA5003
Isopropyl alcohol General-reagent G75885B
Nucleic acid dye Sangon Biotech A616696
Optical Microscope, OM Leica DM2000
Parafilm Parafilm PM996
PCR meter Heal Force Trident960
Penicillin G Marklin GB15743
Potato dextrose agar, PDA Oxoid CM0139
Potato dextrose broth, PDB Solarbio P9240
Primers Sangon Biotech /
Primers Taq TaKaRar RR902A
Rapid Fungi Genomic DNA Isolation Kit Sangon Biotech B518229
Scanning Electron Microscope, SEM Hitachi S-3400N
Streptomycin Marklin S6153
Tetracycline Marklin T829835
Tween-80 Marklin T6336
Vacuum freeze dryer Yamato DC801
Vortex Shaker HLD WH-861
β-Mercaptoethanol Marklin M6230

References

  1. Hajek, A. E., Bauer, L. S. Microbial control of wood-boring insects attacking forest and shade trees. Field Manual of Techniques in Invertebrate Pathology. 10, 505-525 (2007).
  2. Linnakoski, R., Forbes, K. M. Pathogens-the hidden face of forest invasions by wood-boring insect pests. Frontiers in Plant Science. 10, 90 (2019).
  3. Hulcr, J., Dunn, R. R. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society B: Biological Sciences. 278 (1720), 2866-2873 (2011).
  4. Humble, L. M., Allen, E. A. Forest biosecurity: alien invasive species and vectored organisms. Canadian Journal of Plant Pathology. 10, 90 (2006).
  5. Ahmed, R., Freed, S. Biochemical resistance mechanisms against chlorpyrifos, imidacloprid and lambda-cyhalothrin in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Crop Protection. 143, 105568 (2021).
  6. Al-Ayedh, H., Hussain, A., Rizwan-Ul-Haq, M., Al-Jabr, A. M. Status of insecticide resistance in field-collected populations of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). International Journal of Agriculture and Biology. 18 (01), 103-110 (2015).
  7. Garcia, F. R. M., Ovruski, S. M., Suarez, L., Cancino, J., Liburd, O. E. Biological control of Tephritid fruit flies in the Americas and Hawaii: a review of the use of parasitoids and predators. Insects. 11 (10), 662 (2020).
  8. Lacey, L. A., Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annual Review of Entomology. 53, 121-144 (2008).
  9. Wang, Z. Z., Liu, Y. Q., Shi, M., Huang, J. H., Chen, X. X. Parasitoid wasps as effective biological control agents. Journal of Integrative Agriculture. 18 (4), 705-715 (2019).
  10. Islam, W., et al. Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis. 159, 105122 (2021).
  11. Ali, S., Huang, Z., Ren, S. Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. Journal of Pest Science. 83 (4), 361-370 (2010).
  12. Vidal, S., Jaber, L. R. Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Current Science. 109 (1), 46-54 (2015).
  13. Rasool, S., et al. Seed inoculations with entomopathogenic fungi affect aphid populations coinciding with modulation of plant secondary metabolite profiles across plant families. New Phytololgist. 229 (3), 1715-1727 (2021).
  14. Dara, S. K., Montalva, C., Barta, M. Microbial control of invasive forest pests with entomopathogenic fungi: a review of the current situation. Insects. 10 (10), 341 (2019).
  15. Rajula, J., Rahman, A., Krutmuang, P. Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biological Control. 151, 104399 (2020).
  16. Sharma, L., et al. Advances in entomopathogen isolation: a case of bacteria and fungi. Microorganisms. 9 (1), 16 (2020).
  17. Echeverri-Molina, D., Santolamazza-Carbone, S. Toxicity of synthetic and biological insecticides against adults of the Eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae). Journal of Pest Science. 83 (3), 297-305 (2010).
  18. Yang, T. H., et al. Entomopathogenic fungi-mediated biological control of the red palm weevil Rhynchophorus ferrugineus. Journal of Asia-Pacific Entomology. 26 (1), 102037 (2023).
  19. Kepler, R. M., et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus. 8 (2), 335-353 (2017).
  20. Zhou, Y. M., Zhi, J. R., Qu, J. J., Zou, X. Estimated divergence times of Lecanicillium in the family Cordycipitaceae provide insights into the attribution of Lecanicillium. Frontiers in Microbiology. 13, 859886 (2022).
  21. Montalva, C., et al. Lecanicillium attenuatum isolates affecting the invasive cypress aphid (Cinara cupressi) in Chile. BioControl. 62 (5), 625-637 (2017).
  22. Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annual Review of Phytopathology. 51 (1), 61-83 (2013).
  23. Kobayashi, F., Yamane, A., Ikeda, T. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annual Review of Entomology. 29 (1), 115-135 (1984).
  24. Zhao, L., Sun, J. Pinewood nematode Bursaphelenchus xylophilus. (Steiner and Buhrer) Nickle. Biological invasions and its management in China. 13, 3-21 (2017).
  25. Akbulut, S., Stamps, W. T. Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. Forest Pathology. 42 (2), 89-99 (2012).
  26. Shimazu, M. Effects of temperature on growth of Beauveria bassiana F-263, a strain highly virulent to the Japanese pine sawyer, Monochamus alternatus, especially tolerance to high temperatures. Applied Entomology and Zoology. 39 (3), 469-475 (2004).
  27. Han, B., Piao, C. G., Wang, L. F., Li, Y., Zheng, R. Z. Survey, identification and virulence test of pathogens of the pine sawyer beetle, Monochamus alternatus, at forest farm of maanshan, anhui province. Forest Research. 20 (20), 204-208 (2007).
  28. Ma, L., Zhang, L., Lin, H., Mao, S. Investigation of pathogens of Monochamus alternatus in east China and virulence. Chinese Journal of Biological Control. 25 (3), 220-224 (2009).
  29. Alvarez-Baz, G., Fernandez-Bravo, M., Pajares, J., Quesada-Moraga, E. Potential of native Beauveria pseudobassiana strain for biological control of pine wood nematode vector Monochamus galloprovincialis. Journal of Invertebrate Pathology. 132, 48-56 (2015).
  30. Dong, Y., Xie, P., Zheng, K., Gu, Y., Fan, J. Teflon coating and anti-escape ring improve trapping efficiency of the longhorn beetle, Monochamus alternatus. Applied Sciences. 13 (3), 1664 (2023).
  31. Gul, H. T., Saeed, S., Khan, F. Z. A. Entomopathogenic fungi as effective insect pest management tactic: a review. Applied Sciences and Business Economics. 1 (1), 10-18 (2014).
  32. Takuji Noma Strickler, K. Effects of Beauveria bassiana on Lygus hesperus (Hemiptera: Miridae) feeding and oviposition. Environmental Entomology. 29 (2), 394-402 (2000).
  33. Thakur, R., Sandhu, S. S. Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian Journal of Microbiology. 50 (1), 89-96 (2010).
  34. White, T. J., Bruns, T., Lee, S., Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. 18 (1), 315-322 (1990).
  35. Zaman, G., Chayen, J. An aqueous mounting medium. Journal of Clinical Pathology. 34 (5), 567-568 (1981).
  36. Koon, M. A., et al. Preparation of prokaryotic and eukaryotic organisms using chemical drying for morphological analysis in scanning electron microscopy (SEM). Journal of Visualized Experiments. (143), e58761 (2019).
  37. Vilgalys, R., Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 172 (8), 4238-4246 (1990).
  38. Rehner, S. A., Samuels, G. J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Reasearch. 98 (6), 625-634 (1994).
  39. Aphidech, S., Kusavadee, S. Isolation, identification, culture and production of adenosine and cordycepin from cicada larva infected with entomopathogenic fungi in Thailand. African Journal of Microbiology Research. 7 (2), 137-146 (2013).
  40. Wang, Y., et al. Polycephalomyces yunnanensis (Hypocreales), a new species of Polycephalomyces parasitizing Ophiocordyceps nutans and stink bugs (hemipteran adults). Phytotaxa. 208 (1), (2015).
  41. Qi, M., Xie, C. X., Chen, Q. W., Yu, Z. D. Pestalotiopsis trachicarpicola, a novel pathogen causes twig blight of Pinus bungeana (Pinaceae) in China. Antonie Van Leeuwenhoek. 114 (1), 1-9 (2021).
  42. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30 (12), 2725-2729 (2013).
  43. Wu, S., et al. Discovery of entomopathogenic fungi across geographical regions in southern China on pine sawyer beetle Monochamus alternatus and implication for multi-pathogen vectoring potential of this beetle. Frontiers in Plant Science. 13, 1061520 (2022).
  44. Brodeur, J. Host specificity in biological control: insights from opportunistic pathogens. Evolutionary Applications. 5 (5), 470-480 (2012).
  45. Croll, D., Mcdonald, B. A. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Molecular Ecology Resources. 26 (7), 2027-2040 (2017).
  46. Perez-Gonzalez, V. H., et al. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. Journal of Invertebrate Pathology. 119, 54-61 (2014).
  47. Debono, M., Gordee, R. S. Antibiotics that inhibit fungal cell wall development. Reviews of Microbiol. 48, 471-497 (1994).
  48. Li, S., et al. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources. 20 (1), 170-184 (2019).
  49. Wan, J., Dai, Z., Zhang, K., Li, G., Zhao, P. Pathogenicity and metabolites of endoparasitic nematophagous fungus Drechmeria coniospora YMF 1.01759 against nematodes. Microorganisms. 9 (8), 1735 (2021).
  50. Ammon, V., Wyllie, T. D., Brown, M. F. Investigation of the infection process of macrophomina phaseolina on the surface of soybean roots using scanning electron microscopy. Mycopathologia. 55 (2), 77-81 (1975).
  51. Throne, J. E., Hallman, G. J., Johnson, J. A., Follett, P. A. Post-harvest entomology research in the United States department of agriculture-agricultural research service. Pest Management Science. 59 (6-7), 619-628 (2003).
  52. Silver, K., et al. The Tribolium castaneum cell line TcA: a new tool kit for cell biology. Scientific Reports. 4 (1), 6840 (2014).
  53. Fatehi, S., et al. Characterization of iflavirus in the red flour beetle, Tribolium castaneum (Coleoptera; Tenebrionidae). Insects. 14 (3), 220 (2023).
  54. Li, C., et al. Identification and characterization of development-related microRNAs in the red flour beetle, Tribolium castaneum. International Journal of Molecular Sciences. 24 (7), 6685 (2023).
  55. Li, J., et al. The TGF-β receptor gene saxophone influences larval-pupal-adult development in Tribolium castaneum. Molecules. 27 (18), 6017 (2022).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Qu, Y., Wu, S., Zhang, L., Fan, J., Cheng, C. Isolation, Behavioral Identification, and Pathogenicity Assessment of Entomopathogenic Fungi from a Forest Wood Borer. J. Vis. Exp. (199), e65782, doi:10.3791/65782 (2023).

View Video