Summary

粉尘颗粒物覆盖锂离子电池组的空气热管理系统的优化

Published: November 03, 2023
doi:

Summary

在这里,我们提出了自适应模拟退火方法(ASAM),以优化对应于尘土飞扬的颗粒物覆盖的电池热管理系统的近似二次响应面模型(QRSM),并通过调整系统入口的气流速度组合来实现温度回落。

Abstract

本研究旨在解决在低能耗目标下,通过分配电池冷却箱入口处的气流速度,解决含尘颗粒物覆盖电池表面导致电池温度升高和性能下降的问题。我们将电池组在指定气流速度和无尘环境中的最高温度作为多尘环境中的预期温度。求解不同进气流速下多尘环境下电池组的最高温度,这是仿真软件构建的分析模型的边界条件。通过最优拉丁超立方体算法(OLHA)随机生成代表不同进气口气流速度组合的阵列,其中在优化软件中设置了高于所需温度的温度对应的速度下限和上限。我们使用优化软件的拟合模块在速度组合和最高温度之间建立近似QRSM。基于ASAM对QRSM进行了优化,最优结果与仿真软件得到的分析结果吻合较好。优化后,中间入口流量由5.5 m/s变为5 m/s,总气流速度降低3%。本文提出了一种同时考虑已建立的电池管理系统的能耗和热性能的优化方法,可以广泛用于以最低的运行成本提高电池组的生命周期。

Introduction

随着汽车工业的快速发展,传统燃油车消耗了大量的不可再生资源,造成严重的环境污染和能源短缺。最有前途的解决方案之一是电动汽车 (EV) 开发1,2

用于电动汽车的动力电池可以储存电化学能量,这是替代传统燃油汽车的关键。电动汽车中使用的动力电池包括锂离子电池(LIB)、镍氢电池(NiMH)和双电层电容器(EDLC)3。与其他电池相比,锂离子电池因其高能量密度、高效率和长生命周期等优点,目前被广泛用作电动汽车中的储能单元4,5,6,7。

但是,由于化学反应热和焦耳热,在快速充电和高强度放电时容易积聚大量热量并提高电池温度。LIB的理想工作温度为20-40°C 8,9。电池组中电池之间的最大温差不应超过 5 °C10,11。否则,可能会导致电池之间的温度不平衡、加速老化、甚至过热、火灾、爆炸等一系列风险12.因此,需要解决的关键问题是设计和优化一个高效的电池热管理系统(BTMS),该系统可以将电池组的温度和温差控制在狭窄的范围内。

典型的BTMS包括风冷、水冷和相变材料冷却13。在这些冷却方法中,风冷式因其成本低、结构简单等特点而被广泛使用14。由于空气的比热容有限,风冷系统中的电芯之间容易出现高温和较大的温差。为了提高风冷BTMS的冷却性能,有必要设计一个高效的系统15,16,17。Qian等18收集了电池组的最大温度和温差,以训练相应的贝叶斯神经网络模型,用于优化串联风冷电池组的电池间距。Chen等19报道了在Z型并联风冷系统中使用Newton方法和流动阻力网络模型优化入口发散室和出口辐合室的宽度。结果显示,该系统的温差降低了45%。Liu等20在J-BTMS中对5组冷却管道进行了采样,并通过基于集成代理的优化算法获得了单元间距的最佳组合。Baveja等人[21]对被动平衡电池模块进行了建模,该研究描述了热预测对模块级被动平衡的影响,反之亦然。Singh等人[22]研究了一种电池热管理系统(BTMS),该系统使用封装相变材料以及使用耦合电化学-热建模设计的强制对流空气冷却。Fan等23提出了一种包含多级特斯拉阀配置的液体冷却板,为微流控应用中具有高识别度的棱柱形锂离子电池提供更安全的温度范围。Feng等[24]采用变异系数法对不同入口流速和电池间隙的方案进行了评价。Talele 等人 25 引入了墙体增强的热火衬里隔热材料,以根据加热膜的最佳放置来存储潜在的热量。

当使用风冷BTMS时,外部环境中的金属粉尘颗粒、矿物粉尘颗粒、建材粉尘颗粒等颗粒会被鼓风机带入风冷BTMS,这会导致电池表面被DPM覆盖。如果没有散热计划,可能会因电池温度过高而造成事故。经过模拟,我们将电池组在指定气流速度和无尘环境中的最高温度作为多尘环境中的预期温度。首先,C-rate是指电池在规定时间内释放其额定容量时所需的电流值,该值等于数据值中电池额定容量的倍数。本文采用2C倍率放电进行仿真。额定容量为10Ah,额定电压为3.2V,正极材料采用磷酸铁锂(LiFePO4),负极材料采用碳。电解液有电解液锂盐、高纯度有机溶剂、必要的添加剂等原料。通过OLHA确定代表入口处不同速度组合的随机阵列,并在检查曲线拟合精度的条件下,建立电池组最高温度与入口流速组合之间的二阶函数。自 McKay 等人 26 提出以来,拉丁超立方体 (LH) 设计已应用于许多计算机实验中。LH 由 N x p 矩阵 L 给出,其中 L 的每一列都由整数 1 到 N 的排列组成。该文采用最优拉丁超立方体采样方法减轻计算负担。该方法采用分层抽样,确保采样点能够覆盖所有采样内部。

在后续步骤中,在同时考虑能耗的条件下,基于ASAM优化了进气流速组合,以降低多尘环境中电池组的最高温度。自适应模拟退火算法在许多优化问题中得到了广泛的发展和广泛应用27,28。该算法可以通过接受具有一定概率的最差解来避免陷入局部最优。通过定义验收概率和温度来实现全局最优;也可以使用这两个参数来调整计算速度。最后,为了验证优化的准确性,将最佳结果与仿真软件得到的分析结果进行了比较。

该文针对因防尘罩而升温的电池组,提出了一种电池箱入口流量的优化方法。目的是在能耗低的情况下,将有灰尘覆盖的电池组的最高温度降低到低于无尘覆盖电池组的最高温度。

Protocol

注:研究技术路线图如 图1所示,其中使用了建模、仿真和优化软件。所需材料显示在 材料表中。 1. 创建 3D 模型 注意:我们使用 Solidworks 创建 3D 模型。 绘制一个 252 mm x 175 mm 的矩形,单击“ 拉伸凸台/底”(Eltrude Boss/Base),然后输入 73。创建一个距外表面 4 mm 的新平面。 绘制一个 131 mm x 16 mm 的矩形,然?…

Representative Results

按照协议,前三个部分是最重要的,包括建模、网格划分和仿真,所有这些都是为了获得电池组的最高温度。然后,通过采样调节气流速度,最后通过优化得到最优的流速组合。 图9为不同环境下电池组温度分布的比较, 图10 为不同环境下第二电池温度分布的比较。如 <strong class="xf…

Discussion

本研究中使用的BTMS是基于空气冷却系统建立的,因为它成本低,结构简单。由于传热能力低,风冷系统的性能低于液冷系统和相变材料冷却系统。然而,液体冷却系统存在制冷剂泄漏的缺点,相变材料冷却系统质量大,能量密度低29。这些冷却系统各有优缺点。因此,可以通过将风冷系统与液体冷却系统或相变材料冷却系统相结合来建立BTMS,以提高冷却性能。

<p class="jove_cont…

Disclosures

The authors have nothing to disclose.

Acknowledgements

清华大学、建国大学、全南国立大学、木浦大学和千叶大学支持一些分析和优化软件。

Materials

Ansys-Workbench ANSYS N/A Multi-purpose finite element method computer design program software.https://www.ansys.com
Isight Engineous Sogtware N/A Comprehensive computer-aided engineering software.https://www.3ds.com
NVIDIA GPU NVIDIA N/A An NVIDIA GPU is needed as some of the software frameworks below will not work otherwise. https://www.nvidia.com
Software
SOLIDWORKS Dassault Systemes N/A SolidWorks provides different design solutions, reduces errors in the design process, and improves product quality
www.solidworks.com

References

  1. Xia, G., Cao, L., Bi, G. A review on battery thermal management in electric vehicle application. Journal of Power Sources. 367 (1), 90-105 (2017).
  2. Mahamud, R., Park, C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources. 196 (13), 5685-5696 (2011).
  3. Kumar, R., Goel, V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review. Journal of Energy Storage. 71, 108025 (2023).
  4. Fan, Y., et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering. 155, 96-109 (2019).
  5. Mohammadian, S. K., He, Y. L., Zhang, Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. Journal of Power Sources. 293, 458-466 (2015).
  6. Skerlos, S. J., Winebrake, J. J. Targeting plug-in hybrid electric vehicle policies to increase social benefits. Energy Policy. 38 (2), 705-708 (2010).
  7. Avadikyan, A., Llerena, P. A real options reasoning approach to hybrid vehicle investments. Technological Forecasting and Social Change. 77 (4), 649-661 (2010).
  8. Chen, K., Chen, Y., Li, Z., Yuan, F., Wang, S. Design of the cell spacings of battery pack in parallel air- cooled battery thermal management system. International Journal of Heat and Mass Transfer. 127, 393-401 (2018).
  9. Jiang, Z. Y., Qu, Z. G. Lithium – ion battery thermal management using heat pipe and phase change material during discharge – charge cycle: A comprehensive numerical study. Applied Energy. 242, 378-392 (2019).
  10. Saw, L. H., et al. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied energy. 177, 783-792 (2016).
  11. Park, H. A design of air flow configuration for cooling lithium – ion battery in hybrid electric vehicles. Journal of Power Sources. 239 (10), 30-36 (2013).
  12. Wang, Q., et al. Thermal runaway caused fire and explosion of lithium-ion battery. Journal of power sources. 208, 210-224 (2012).
  13. Rao, Z., Wang, S. A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews. 15 (9), 4554-4571 (2011).
  14. Chen, K., Wu, W., Yuan, F., Chen, L., Wang, S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy. 167, 781-790 (2019).
  15. Lan, X., Li, X., Ji, S., Gao, C., He, Z. Design and optimization of a novel reverse layered air-cooling battery management system using U and Z type flow patterns. International Journal of Energy Research. 46 (10), 14206-14226 (2022).
  16. Singh, G., Wu, H. Effect of different inlet/outlet port configurations on the thermal management of prismatic Li-ion batteries. Journal of Heat Transfer. 144 (11), 112901 (2022).
  17. Zhang, J., Wu, X., Chen, K., Zhou, D., Song, M. Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. Journal of Power Sources. 490, 229539 (2021).
  18. Qian, X., Xuan, D., Zhao, X., Shi, Z. Heat dissipation optimization of lithium-ion battery pack based on neural networks. Applied Thermal Engineering. 162, 114289 (2019).
  19. Chen, K., Wang, S., Song, M., Chen, L. Structure optimization of parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer. 111, 943-952 (2017).
  20. Liu, Y., Zhang, J. Self-adapting J-type air-based battery thermal management system via model predictive control. Applied Energy. 263, 114640 (2020).
  21. Baveja, R., Bhattacharya, J., Panchal, S., Fraser, R., Fowler, M. Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. Journal of Energy Storage. 70, 107967 (2023).
  22. Singh, L. K., Kumar, R., Gupta, A. K., Sharma, A. K., Panchal, S. Computational study on hybrid air-PCM cooling inside lithium-ion battery packs with varying number of cells. Journal of Energy Storage. 67, 107649 (2023).
  23. Fan, Y., et al. Multi-objective optimization design and experimental investigation for a prismatic lithium-ion battery integrated with a multi-stage Tesla valve-based cold plate. Processes. 11 (6), 1618 (2023).
  24. Feng, Z., et al. Optimization of the Cooling Performance of Symmetric Battery Thermal Management Systems at High Discharge Rates. Energy Fuels. 37 (11), 7990-8004 (2023).
  25. Talele, V., Moralı, U., Patil, M. S., Panchal, S., Mathew, K. Optimal battery preheating in critical subzero ambient condition using different preheating arrangement and advance pyro linear thermal insulation. Thermal Science and Engineering Progress. 42, 101908 (2023).
  26. Kenny, Q. Y., Li, W., Sudjianto, A. Algorithmic construction of optimal symmetric Latin hypercube designs. Journal of statistical planning and inference. 90 (1), 145-159 (2000).
  27. Oliveira Jr, H. A., Petraglia, A. Global optimization using dimensional jumping and fuzzy adaptive simulated annealing. Applied Soft Computing. 11 (6), 4175-4182 (2011).
  28. Ingber, L. Very fast simulated re-annealing. Mathematical and computer modelling. 12 (8), 967-973 (1989).
  29. Yu, X., et al. Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy. International Journal of Heat and Mass Transfer. 143, 118576 (2019).
  30. Li, W., Xiao, M., Peng, X., Garg, A., Gao, L. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Applied Thermal Engineering. 147, 90-100 (2019).
  31. Chen, K., Zhang, Z., Wu, B., Song, M., Wu, X. An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering. 236, 121578 (2023).
  32. Zhao, L., Li, W., Wang, G., Cheng, W., Chen, M. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling. Applied Thermal Engineering. 232, 120992 (2023).
  33. Oyewola, O. M., Awonusi, A. A., Ismail, O. S. Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles. Alexandria Engineering Journal. 71, 631-644 (2023).
  34. Chen, K., et al. Design of parallel air-cooled battery thermal management system through numerical study. Energies. 10 (10), 1677 (2017).
  35. Lyu, C., et al. A new structure optimization method for forced air-cooling system based on the simplified multi-physics model. Applied Thermal Engineering. 198, 117455 (2021).
  36. Zhang, W. C., Liang, Z. C., Ling, G. Z., Huang, L. S. Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system. Journal of Energy Storage. 41, 102849 (2021).
  37. Li, M. L., Zang, M. Y., Li, C. Y., Dai, H. Y. Optimization of structure of air cooling heat dissipation for Li-ion batteries. Battery Bimonthly. 50 (3), 1001 (2020).
check_url/kr/65892?article_type=t

Play Video

Cite This Article
Feng, X., Li, Z., Pang, S., Ren, M., Chen, Z. Optimization of An Air-Based Heat Management System for Dusty Particulate Matter-Covered Lithium-Ion Battery Packs. J. Vis. Exp. (201), e65892, doi:10.3791/65892 (2023).

View Video