Back to chapter

3.11:

Covalent Bonds

JoVE Core
Anatomy and Physiology
É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
JoVE Core Anatomy and Physiology
Covalent Bonds

Idiomas

COMPARTILHAR

Covalent bonds are formed between atoms that share one or more pairs of valence electrons.

The shared electron pair interacts with the bonding atoms' nuclei, lowering the potential energy.

The number of covalent bonds formed is determined by the number of shared electrons needed to achieve the same number of electrons in the valence shell as the nearest noble gas configuration.

For example, in a nitrogen molecule, each atom requires three more electrons to reach its nearest noble gas configuration, whereas, in molecular oxygen, each atom needs only two. So, nitrogen forms triple bonds, while oxygen makes double bonds.

As the number of bonds between atoms increases, the bond strength increases.

Some atoms such as oxygen, attract the shared electrons more strongly in a water molecule, which means they have a higher electronegativity. They form polar covalent bonds giving the oxygen atom a partial negative charge.

3.11:

Covalent Bonds

Visão Geral

When two atoms share electrons to complete their valence shells, they create a covalent bond. An atom's electronegativity—the force with which shared electrons are pulled towards an atom—determines how the electrons are shared. Molecules formed with covalent bonds can be either polar or nonpolar. Atoms with similar electronegativities form nonpolar covalent bonds; the electrons are shared equally. Atoms with different electronegativities share electrons unequally, creating polar bonds.

The number of covalent bonds that an atom can form is dictated by how many valence electrons it has. Oxygen, for example, has six out of eight possible valence electrons, meaning that each oxygen atom needs two more electrons to become stable. Oxygen can form single bonds with two other atoms, as it does when it forms water with two hydrogen atoms (chemical formula H2O). Oxygen can also form a double bond with just one other atom that also needs two more electrons to complete its octet (e.g., another oxygen atom). Carbon has four valence electrons and can form four covalent bonds, as it does in methane (CH4).

When a covalent bond is made, both atoms share a pair of electrons in a hybrid orbital that differs in shape from a normal orbital. The electrons participating in the bond orbit in a modified path around the nuclei of both atoms. Covalent bonds are strong and cannot be broken by physical forces once formed.

Electronegativity Determines Whether a Molecule Is Polar or Nonpolar

Electronegativity is the tendency of an atom to attract electrons in a bond. The most electronegative atom is fluorine. Starting with fluorine at the top right corner of the periodic table (omitting the noble gases in the rightmost column), the electronegativity of atoms tends to decrease with a diagonal leftward movement down the periodic table, such that atoms with the lowest electronegativities are at the bottom left corner (e.g., francium, or Fr). If atoms have significantly different electronegativities, they will likely form ions instead of covalent bonds. However, for atoms that form covalent bonds with one another, their electronegativity values determine whether the bond will be polar or nonpolar.

A nonpolar bond is one in which the electrons are shared equally, and there is no charge across the molecule. A polar bond, by contrast, occurs when one atom is more electronegative than another and pulls the electrons toward it. Polar bonds have a partial negative charge on one side and a partial positive charge on the other, which is important because it causes polar molecules to behave differently than nonpolar ones.

Polar molecules are hydrophilic because their partial charges attract them to other charged molecules, which also means they are soluble in water. Nonpolar molecules containing long stretches of hydrocarbons, such as fats, are said to be hydrophobic. Unlike polar molecules, nonpolar molecules will not dissolve in water. Cells are often surrounded by fluid and have cytoplasms that contain water. How a molecule interacts with water and other charged molecules impacts how it is transported and used by cells.

This text is adapted from Openstax, Chemistry 2e, Section 7.1: Ionic Bonding, Openstax, Section 7.2: Covalent Bonding, Section 10.5: The Solid State of Matter, and Section 7.5. Bond Strength: Covalent Bonds.