Summary

蛋白质和细胞坐月子创建二维图案衬底

Published: September 06, 2011
doi:

Summary

金长链烷烃硫醇形成的自组装单层膜(SAMS)提供了定义良好的蛋白质模式的形成和细胞禁闭基板。使用一个邮票回填与聚二甲基硅氧烷(PDMS)微接触印刷hexadecanethiol乙二醇终止烷烃硫醇单体生产蛋白质和细胞吸附加盖hexadecanethiol地区唯一的模式。

Abstract

微接触印刷提供了一个快速,为创建良好定义的图案衬底的高度重复性方法1虽然微接触印刷,可直接打印大量的分子,包括蛋白质,DNA的 2,3和硅烷,形成自我金长链烷烃硫醇组装单层膜(SAMS)提供了一个简单的方法来限制​​蛋白质和细胞含有粘合剂和耐地区的具体模式。这禁闭可用于控制细胞的形态,是用于研究的蛋白质和细胞生物学的各种问题。在这里,我们描述了细胞研究创造良好定义的蛋白质模式的一般方法,5这个过程包括三个步骤:一个图案主生产采用光刻,创造一个PDMS邮票,和微接触印刷金涂基材。图案后,这些细胞培养基质围蛋白质和/或细胞(原代细胞或细胞株)的格局。

对图案的蛋白质/细胞粘附地区和非粘性地区的精确控制允许使用的自组装单层化学,不能使用直接的蛋白质冲压实现。 Hexadecanethiol,微接触印刷步骤所用的长链烷烃硫醇,产生一个疏水表面容易吸附溶液中的蛋白质。乙二醇终止的巯基,用于回填基板的非打印区域,创建一个单层抗蛋白质吸附,因此,细胞的生长。6这些巯基的单体生产的高度结构化膜,精确地界定地区的基板,可以支持蛋白质吸附和细胞的生长。因此,这些承印物是有用的各种广泛的应用从7间行为研究创造微电子8。

虽然已用于细胞培养的研究,包括从本集团的工作,创建模式,直接在玻璃基板上使用trichlorosilanes的其他类型的单层化学,9图案形成单分子膜对黄金的烷烃硫醇直截了当的准备。此外,单层准备使用的单体商业,​​稳定,不需要储存或处理惰性气氛下。烷烃硫醇准备的图案基板也可以被回收和重复使用多次,维持细胞禁闭10。

Protocol

1。制备的图案硕士(图1) 中心硅片上的自旋涂布在两个周期自旋方案的表1中的最初步骤,并用丙酮冲洗晶圆。丙酮蒸发过程中的自旋留下一个清洁,干燥的晶圆计划的第二步。 应用约1毫升AZ9245光阻/(直径)晶圆和自旋大衣,使用表1中所述的条件。 软烤的光致抗蚀剂涂层的晶圆在110 ° C为2米,用高均匀烤盘。 Photopattern基材,使用一个直写光刻系统或光刻系统和适…

Discussion

一个用于PDMS的邮票创造主的平版印刷生产中可能出现的一些问题。曝光不足,在若隐若现的模式和曝光过度放大或缺少的功能抵抗涂​​层的晶圆结果抵抗涂层的晶圆结果。在一般情况下,与大特征尺寸(> 10微米)的主人是相对容易的图案和开发,而较小的特点的主人可以要求广泛photopatterning和发展参数优化(超越光阻制造商推荐的参数)。最困难的主人,生产大型和小型的功能结合起来。 <…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢华盛顿大学的集体知识,这个协议可能在整个毛雷尔组。这项工作的经费是由国家精神卫生研究所(1R01MH085495)。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Silicon wafer Wafer Reclaim Services   2 inch
Spin coater/hot plate Brewer Science Cee 200CB Spin-Bake System  
AZ9245 Photoresist Mays Chemical Company 105880034-1160  
Direct-write photolithography system Microtech s.r.l. LW325 LaserWriter System  
Mask Aligner HTG 3HR  
AZ 400K Developer Mays Chemical Company 105880018-1160  
Sylgard 182 Silicone Elastomer Kit Dow Corning    
25 mm no. 1 round glass coverslips VWR 16004-310  
Plasma Oxidizer Diener Femto  
Titanium pieces Kamis Incorporated   99.95% pure
Gold pellets Kamis Incorporated   99.999% pure
Electron-beam evaporator Kurt J. Lesker PVD 75 Thin Film Deposition System with electron-beam accessory
Hexadecanethiol Alfa Aesar A11362  
1-mercaptoundec-11-yl)tetra(ethyleneglycol) Sigma Aldrich 674508  
Ethanol Pharmco-aaper 111000200 200 proof, absolute
Parafilm VWR 52858-000  
DPBS VWR 4500-434 Without calcium and magnesium
Mouse Laminin I VWR 95036-762  
Human Plasma Fibronectin Invitrogen 33016-015  
AlexaFluor® 647 carboxylic acid, succinimidyl ester Invitrogen A-20006  
MitoTracker Red 580 Invitrogen M22425  
AlexaFluor® 350 carboxylic acid, succinimidyl ester Invitrogen A-10168  
Anti-laminin antibody Fisher Scientific AB2034MI  

Referências

  1. Wilbur, J., Kumar, A., Biebuyck, H., Kim, E., Whitesides, G. Microcontact printing of self-assembled monolayers: Applications in microfabrication. Nanotechnology. 7, 452-457 (1996).
  2. Chang, J., Brewer, G., Wheeler, B. A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials. 24, 2863-2870 (2003).
  3. Lange, S., Benes, V., Kern, D., Horber, J., Bernard, A. Microcontact printing of DNA molecules. Analytical Chemistry. , 1641-1647 (2004).
  4. Xia, Y., Mrksich, M., Kim, E., Whitesides, G. Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J. Am. Chem. Soc. , 9576-9577 (1995).
  5. Mrksich, M., Dike, L., Tien, J., Ingber, D., Whitesides, G. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Experimental Cell Research. , 305-313 (1997).
  6. Prime, K. L., Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide) – a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10714-10721 (1993).
  7. Raghavan, S., Desai, R., Kwon, Y., Mrksich, M., Chen, C. Micropatterned Dynamically Adhesive Substrates for Cell Migration. Langmuir. , 17733-17738 (2010).
  8. Rogers, J., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci U S A. 98, 4835-4840 (2001).
  9. Yanker, D., Maurer, J. Direct printing of trichlorosilanes on glass for selective protein adsorption and cell growth. Molecular Biosystems. 4, 502-504 (2008).
  10. Johnson, D., Maurer, J. Recycling and reusing patterned self-assembled monolayers for cell culture. Chemical Communications. , 520-522 (2011).
  11. Herne, T., Tarlov, M. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. , 8916-8920 (1997).
  12. Hanson, E., Schwartz, J., Nickel, B., Koch, N., Danisman, M. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. , 16074-16080 (2003).
  13. Johannes, M., Cole, D., Clark, R. Atomic force microscope based nanofabrication of master pattern molds for use in soft lithography. Applied Physics Letters. , (2007).
  14. Bessueille, F., Pla-Roca, M., Mills, C. A., Martinez, E., Samitier, J., Errachid, A. Submerged microcontact printing (SμCP): An unconventional printing technique of thiols using high aspect ratio, elastomeric stamps. Langmuir. , 12060-12063 (2005).
  15. Xia, Y., Whitesides, G. Extending microcontact printing as a microlithographic technique. Langmuir. , 2059-2067 (1997).
  16. Biasco, A., Pisignano, D., Krebs, B., Pompa, P. P., Persano, L., Cingolani, R., Rinaldi, R. Conformation of microcontact-printed proteins by atomic force miroscopy molecular sizing. Langmuir. , 5154-5158 (2005).
  17. Shen, K., Qi, J., Kam, L. C. Microcontact printing of proteins for cell biology. J Vis Exp. (22), e1065-e1065 (2008).
  18. Piner, R., Zhu, J., Xu, F., Hong, S., Mirkin, C. “Dip-pen” nanolithography. Science. 283, 661-663 (1999).
  19. Ryan, D., Parviz, B. A., Linder, V., Semetey, V., Sia, S. K., Su, J., Mrksich, M., Whitesides, G. M. Patterning multiple aligned self-assembled monolayers using light. Langmuir. , 9080-9088 (2004).
check_url/pt/3164?article_type=t

Play Video

Citar este artigo
Johnson, D. M., LaFranzo, N. A., Maurer, J. A. Creating Two-Dimensional Patterned Substrates for Protein and Cell Confinement. J. Vis. Exp. (55), e3164, doi:10.3791/3164 (2011).

View Video