Summary

लंबी अवधि में घ्राण अनुकूलन के एक आणविक Readout<em> सी. एलिगेंस</em

Published: December 22, 2012
doi:

Summary

यहाँ हम लंबी अवधि में घ्राण अनुकूलन के एक आणविक readout का वर्णन<em> Caenorhabditis एलिगेंस</em>. प्रोटीन kinase जी, EGL-4, प्राथमिक संवेदी न्यूरॉन AWC बुलाया जोड़ी में स्थिर अनुकूलन प्रतिक्रियाओं के लिए आवश्यक है. लंबे समय तक गंध जोखिम EGL 4 cytosol से AWC के नाभिक को translocates के दौरान.

Abstract

During sustained stimulation most sensory neurons will adapt their response by decreasing their sensitivity to the signal. The adaptation response helps shape attention and also protects cells from over-stimulation. Adaptation within the olfactory circuit of C. elegans was first described by Colbert and Bargmann1,2. Here, the authors defined parameters of the olfactory adaptation paradigm, which they used to design a genetic screen to isolate mutants defective in their ability to adapt to volatile odors sensed by the Amphid Wing cells type C (AWC) sensory neurons. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor3 for 30 min they will adapt their responsiveness to the odor and will then ignore the adapting odor in a chemotaxis behavioral assay for ~1 hr. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor for ~1 hr they will then ignore the adapting odor in a chemotaxis behavioral assay for ~3 hr. These two phases of olfactory adaptation in C. elegans were described as short-term olfactory adaptation (induced after 30 min odor exposure), and long-term olfactory adaptation (induced after 60 min odor exposure). Later work from L’Etoile et al.,4 uncovered a Protein Kinase G (PKG) called EGL-4 that is required for both the short-term and long-term olfactory adaptation in AWC neurons. The EGL-4 protein contains a nuclear localization sequence that is necessary for long-term olfactory adaptation responses but dispensable for short-term olfactory adaptation responses in the AWC4. By tagging EGL-4 with a green fluorescent protein, it was possible to visualize the localization of EGL-4 in the AWC during prolonged odor exposure. Using this fully functional GFP-tagged EGL-4 (GFP::EGL-4) molecule we have been able to develop a molecular readout of long-term olfactory adaptation in the AWC5. Using this molecular readout of olfactory adaptation we have been able to perform both forward and reverse genetic screens to identify mutant animals that exhibit defective subcellular localization patterns of GFP::EGL-4 in the AWC6,7. Here we describe: 1) the construction of GFP::EGL-4 expressing animals; 2) the protocol for cultivation of animals for long-term odor-induced nuclear translocation assays; and 3) the scoring of the long-term odor-induced nuclear translocation event and recovery (re-sensitization) from the nuclear GFP::EGL-4 state.

Protocol

1. GFP का निर्माण EGL-4 व्यक्त पशु Tagged जीन ओडीआर 3 (2678 बीपी सीधे शुरू कोडोन के अपस्ट्रीम उपयोग करें) के लिए प्रमोटर के तहत translational संलयन :: GFP क्लोन EGL-4: (पी) ओडीआर-3 :: GFP :: EGL-4. अभिव्यक्ति amphid न्यूरॉन जोड़े में ओडीआ?…

Representative Results

:: GFP EGL 4in स्थानीयकरण AWC पहले पैटर्न और लंबे समय तक गंध के प्रदर्शन के बाद के एक उदाहरण चित्रा 2 में दिखाया गया है. पिछले लंबे समय तक गंध जोखिम, GFP :: EGL-4 AWC (चित्रा 2B) की cytosol स्थानीय है, और के बाद 80 मिनट में ग…

Discussion

गंध प्रेरित एक GFP टैग EGL चार अणु परमाणु प्रविष्टि यहाँ वर्णित सी. में घ्राण अनुकूलन का एक मजबूत आणविक readout प्रदान करता है एलिगेंस. गंध से प्रेरित परमाणु स्थानान्तरण assays सीधा कर रहे हैं और तैयारी के सम?…

Declarações

The authors have nothing to disclose.

Acknowledgements

हम इस पांडुलिपि के सावधान पढ़ने के लिए स्कॉट हैमिल्टन, और O'Halloran प्रयोगशाला के सदस्यों का शुक्रिया अदा करना चाहते हैं. हम भी हमारे गुमनाम समीक्षक उत्कृष्ट सुझाव और insightful टिप्पणियों के लिए धन्यवाद.

Materials

Name of the reagent Company Catalogue number Comments
Bacto Agar Difco DF0140-07-4 NGM plates
Sodium Chloride Fisher Chemical S671-10 NGM plates
Bacto Peptone Difco DF0118-07-2 NGM plates
Potassium Phosphate Dibasic Fisher Chemical S375-500 S-Basal buffer and NGM plates
Potassium Phosphate Monobasic Fisher Chemical P285-500 S-Basal buffer and NGM plates
Kimwipes – Small Kimberly-Clark LS2770  
Ethanol 100% Gold Shield Chemical Co. 43196-115 diluting odors for chemotaxis assays
Calcium Chloride Sigma-Aldrich C8106-500G NGM plates
Magnesium Sulphate MP Biomedicals 150136-500G NGM plates
Sodium Azide 99% Fisher Scientific ICN10289180 Anesthetic
Agarose – UltraPure Invitrogen 16500-500 Agarose pads
Benzaldehyde Sigma-Aldrich B1334-100G AWC odor
Butanone, ACS Grade Sigma-Aldrich 360473-500ML AWC odor
Microcentrifuge Tubes – 1.5 ml Colored Denville LS8147  
Pasteur Pipet Disposable Glass 5-3/4″ Fisher Scientific 13-678-20B  
Stratalinker Stratagene Stratalinker 2400 UV integration
Filter Vacuum Bottle – 500 ml Nalgene 09-740-25B  

Referências

  1. Colbert, H. A., Bargmann, C. I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron. 14 (4), 803 (1995).
  2. Colbert, H. A., Bargmann, C. I. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learning and Memory. 4 (2), 179 (1997).
  3. Bargmann, C. I., et al. Odorant-selective genes and neurons mediate olfaction in C. elegans. Neuron. 74 (3), 515 (1993).
  4. L’Etoile, N. D., et al. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron. 36, 1079-10 (2002).
  5. Lee, J. I., et al. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. PNAS. 107 (13), 6016 (2010).
  6. O’Halloran, D. M., et al. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans. PLoS Genetics. 5 (12), e1000761 (2009).
  7. O’Halloran, D. M., et al. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS ONE. 7 (2), e31614 (2012).
  8. Mello, C. C., et al. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO Journal. 10, 3959-39 (1991).
  9. Miyabayashi, T., et al. Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. Dev. Biol. 215, 314 (1999).
  10. L’Etoile, N. D., Bargmann, C. I. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron. 25 (3), 575 (2000).
  11. Mello, C., Fire, A. DNA transformation. Methods Cell Biol. 48, 451 (1995).
  12. Stiernagle, T. Maintenance of C. elegans. Wormbook. , (2006).
  13. Brenner, S. The genetics of Caenorhabditis elegans. Genética. 77 (1), 71 (1974).
  14. Kauffman, A., Parsons, L., Stein, G., Wills, A., Kaletsky, R., Murphy, C. C. elegans Positive Butanone Learning, Short-term, and Long-term Associative Memory Assays. J. Vis. Exp. (49), e2490 (2011).
  15. Berkowitz, L. A., Hamamichi, S., Knight, A. L., Harrington, A. J., Caldwell, G. A., Caldwell, K. A. Application of a C. elegans Dopamine Neuron Degeneration Assay for the Validation of Potential Parkinson’s Disease Genes. J. Vis. Exp. (17), e835 (2008).
  16. Pittenger, C., Kandel, E. R. In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358 (1432), 757 (2003).
check_url/pt/4443?article_type=t

Play Video

Citar este artigo
He, C., Lee, J. I., L’Etoile, N., O’Halloran, D. A Molecular Readout of Long-term Olfactory Adaptation in C. elegans. J. Vis. Exp. (70), e4443, doi:10.3791/4443 (2012).

View Video