Summary

分离新生小鼠心肌文化和

Published: September 06, 2013
doi:

Summary

原代小鼠心肌细胞培养物的肌原纤维组织和功能的研究的关键工具之一。以下协议描述了从新生小鼠心脏原发性心肌细胞的分离和培养。所得到的心肌细胞培养物随后可用于各种生物力学,生物化学和细胞生物学测定。

Abstract

培养的乳鼠心肌细胞长期被用来研究肌丝和肌原纤维的功能。培养的心肌细胞可以很容易调查的生化途径和操作,以及它们对自发跳动的心肌细胞的生物力学特性的影响。

下面2日协议描述的新生小鼠心肌细胞的分离和培养。我们将展示如何轻松地从新生儿心脏解剖,游离心脏组织,并从心脏细胞群丰富的心肌细胞。我们讨论了不同酶混合的用法细胞解离,及其对细胞活力的影响。分离的心肌细胞随后可以用于各种形态,电生理,生化,细胞生物或生物力学分析。我们优化了协议鲁棒性和再现性,通过仅使用市售溶液和酶混合了的shOW小批与批之间变化。我们还应对与心肌细胞的分离和培养相关的常见问题,并提供了多种用于分离和培养条件的优化选项。

Introduction

对啮齿动物的心脏细胞的成功分离并培养了最早报道可以追溯到1960年的1,2。即使这样,Harary和法利注意到,培养的心肌细胞“可提供的周期性收缩的要求,研究一个独特的系统[,并可能]提供确定的[跳动]过程中的各种代谢途径的贡献的一种手段”。虽然Harary和法利从幼鼠,和原来的协议分离培养的心肌细胞已被改编,被许多科学家修改多年来,一般隔离和培养过程并没有很大的变化。然而,更好的酶3,标准化解决方案4,5和加法可逆信道和肌球蛋白ATP酶抑制剂BDM分离过程6-9期间保护细胞的有显著改善细胞产量和活力。

成人与新生大鼠心肌核细胞

心肌细胞的分离,培养新生小鼠或大鼠有超过成人的心肌细胞培养几个优点。最重要的,在分离过程中对新生小鼠或大鼠心脏更容易且成本更低,相对于从成年小鼠或大鼠心肌细胞10的隔离。新生心肌远远不敏感,再引入含钙介质离解后,极大地提高细胞产量。另一大优势是,新生小鼠心肌细胞进行更快速的分化 – 再分化周期,通常会产生电镀后自发跳动的细胞20小时,而成人的心肌细胞通常需要起搏诱导收缩。乳鼠心肌细胞也更容易转染的脂质体转染方法,而成人的心肌细胞需要病毒载体成功传递转基因DNA的。相反,新​​生心肌细胞秒,成年啮齿动物心肌11-13文化允许的肌原纤维的降解和收缩设备的最终重建的调查。在成人的心肌细胞,这些特征的形态学变化发生在1-2周时间。去分化-再分化周期是伴随胎儿基因程序的再表达,从而模拟在人心肌病14观察到的病理变化。成年大鼠心肌细胞在新生大鼠心肌文化的另一个优点是能够培养这些细胞很长一段时间。

大鼠与小鼠的心肌细胞

新生大鼠心肌细胞的分离和培养有一定的好处超过了小鼠乳鼠心肌细胞,包括活细胞的产量更高,增加了转染率。然而,转基因小鼠模型心脏疾病的广泛使用( 如</ em>的肌肉LIM蛋白基因敲除小鼠为模型,扩张型心肌病15),导致了分离过程的适应从新生小鼠的心肌。虽然用于分离新生大鼠和小鼠心肌的协议几乎是相同的,更大的关怀必须采取适当的酶混合物,后者的选择。事实上,新生小鼠心肌细胞一般都比较容易过量,造成降低的细胞产量和活力。此外,铺板密度应调整,因为相比于从新生大鼠心脏的细胞从新生小鼠衍生的心肌细胞是要小一些。

与许多用途的形态,电生理,生物化学,细胞生物学和生物力学参数以及为肌丝的过程进行调查,培养的乳鼠心肌细胞已成为最通用的系统的研究之一心肌细胞功能的体外 。第一步,一个成功的实验然而,依赖于一个简单而可靠的方法来隔离乳鼠心肌细胞。我们的协议借鉴其方法有很多,是为再现性和鲁棒性优化。我们讨论了影响心肌的产量和活力的因素,以及对分离和培养条件的优化提供了多种选择。

Protocol

下面的过程描述了为期两天的协议16,17对新生小鼠心肌细胞的分离和培养。所有溶液是无菌的或无菌过滤。所有的工具都通过表面杀菌消毒用75%的乙醇。除了最初的组织提取,所有步骤都在无菌层流细胞培养罩进行。此协议的目的是为新生小鼠心脏从一个个垃圾(次)的隔离 – 约5-14幼崽,但可以适用于较大的窝产仔数和新生大鼠心肌细胞。规模媒体/酶用量(如适用)。 <p class="jove_con…

Representative Results

使用此协议,我们分离的心从8一日龄新生小鼠( 图1A,1B,追加电影S1)。洗涤和切碎的心,用剪刀( 图1C-1F)后,组织碎片在预消化分离培养基过夜,4℃,轻轻摇动。以下简化( 图1G),我们将其组织碎片进入新鲜的消化培养基,并温育的组织碎片20分钟,在37℃下缓慢搅拌。将所得细胞悬浮液( 图1H),是通过细胞过滤网( 图1G)</strong…

Discussion

利用动物模型来研究心脏疾病在心血管研究已经成为标准。这些模型的建立更紧密的生化特性( 研究心肌细胞的直接反应,生物化学或生物力学刺激)通常需要心脏组织或心肌细胞的分离。调查研究心脏的生理反应体外对乙酰胆碱40,或在缺血再灌注场景41)一般采用的Langendorff灌注整个心灵42,43,而植体培养心肌组织碎片44,45允许对心?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢名誉教授让 – 克洛德·Perriard和伊夫林Perriard(瑞士联邦理工学院,瑞士)的引入隔离技术的新生大鼠和小鼠心肌细胞。我们要感谢朱教授和陈教授西尔维娅·埃文斯(加州大学圣地亚哥分校,美国)的支持。在EE的实验室工作是由一个MRC事业建立格兰特。 SL是由K99/R00途径独立性奖从NIH / NHLBI(HL107744)的支持。 TMM是由美国心脏协会(11POST7310066)的博士后奖学金支持。

Materials

Name of the reagent Company Catalogue number Comments (optional)
BDM (2,3-Butanedione monoxime) 6-8 Sigma B-0753 prepare 0.2M stock solution in HBSS (without Ca2+, Mg2+), filter sterilize, can be kept at 4 °C up to 6 months; Caution: Prolonged usage of BDM other than during isolation procedure may result in non-beating cells, decreased cell viability and/or significantly altered gene-expression during cardiomyocyte culture46,47.
Collagenase/Dispase Roche 10269638001 can be substituted with collagenase type II from Worthington
Collagenase type II3 Worthington CLS-2 substitute for Collagenase/Dispase mix from Roche
1x trypsin solution (0.25%) with EDTA e.g. cellgro 25-053-CI  
1x Penicillin/ Streptomycin solution with EDTA in HBSS e.g. cellgro 30-002-Cl  
1x PBS (without Ca2+, Mg2+) e,g, cellgro 21-040-CV  
HBSS (Hank’s balanced salt solution; without Ca2+, Mg2+) 4 e.g. cellgro 21-022-CV  
DMEM high glucose e.g. cellgro 10-013-CV  
M-199 e.g. cellgro 10-060-CV  
fetal bovine serum e.g. cellgro 35-011-CV cell-culture grade
horse serum e.g. cellgro 35-030-CV cell-culture grade
Leibovitz L-155 e.g. cellgro 10-045-CV  
AraC (Cytosine-B-D-arabino-furanoside hydrochloride) Sigma C-6645 proliferation inhibitor, prepare 1 mM stock solution in H2O, filter sterilize, store at 4 °C
phenylephrine Sigma P-6126 chronotropic agent, prepare 100 mM stock solution in H2O, filter sterilize, store at 4 °C or -20 °C
isoproterenol hydrochloride Sigma I-6501 chronotropic agent, prepare 1 mM stock solution in H2O, filter sterilize, store at 4 °C or -20 °C
0.1% collagen solution Sigma C-8919 extracellular matrix for coating
3 mg/ml collagen type 1 solution Advanced BioMatrix 5005-B alternative to Sigma collagen solution
cell strainer e.g. Fisherbrand 22363548 appropriate filter size:40 μm-100 μm
syringe filter 0.2 μm e.g. Fisherbrand 09-719C for sterile filtration of digestion medium
straight scissors e.g. Fine Sciences Tools 91460-11  
curved scissors e.g. Fine Science Tools 91461-11  
Dumont No. 7 forceps e.g. Fine Science Tools 91197-00  
perforated spoon e.g. Fine Science Tools 10370-19 optional, for transfer of heart tissue
Trypan blue e.g. Gibco 15250-061 live cell staining
Neubauer hemocytometer e.g. Prosource Scientific 3500 alternatively use: disposable hemocytometer C-chip or automated cell counting systems
50 ml Falcon tubes e.g. Fisherbrand 14-432-23  
15 ml Falcon tubes e.g. Fisherbrand 05-527-90  
20 ml syringe e.g. BD Medical 14-820-19  
10 ml serological pipette e.g. Falcon 357551  
30 mm cell culture dish e.g. Nunc 153066 for standard culture of cardiomyocytes
30 mm cell culture dish, glass bottom MatTek P35G-0-10-C for live cell imaging with inverted microscope
10 cm cell culture dish e.g. Nunc 172958 for preplating
Escort III Sigma L3037 for liposomal transfection, alternatively use lipofectamin 2000
Lipofectamine 2000 Life Technologies, Invitrogen 52887 substitute for Escort III
      Buffers and media:
  • Isolation medium (filter sterilize)
    20 mM BDM
    0.0125% trypsin
    in HBSS4 (without Ca2+, Mg2+)
  • Digestion medium (filter sterilize)
    20 mM BDM
    1.5 mg/ml Roche Collagenase/Dispase enzyme mix
    in L15 medium
  • Plating medium
    65% DMEM high glucose
    19% M-199
    10% horse serum
    5% fetal calf serum
    1% penicillin/streptomycin
  • Maintenance medium
    78% DMEM high glucose
    17% M-199
    4% horse serum
    1% penicillin/streptomycin
    optional:
    1 μM AraC
    1 μM isoproterenol or 0.1 mM phenylephrine
The plating and maintenance medium can be stored at 4 °C for up to 6 months.

Referências

  1. Harary, I., Farley, B. In vitro studies of single isolated beating heart cells. Science. 131, 1674-1675 (1960).
  2. Harary, I., Farley, B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp. Cell Res. 29, 451-465 (1963).
  3. Worthington Biochemical Corp. . Worthington Enzyme Manual. , (2012).
  4. Hanks, J. H., Wallace, R. E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 71, 196-200 (1949).
  5. Leibovitz, A. The Growth and Maintenance of Tissue-Cell Cultures in Free Gas Exchange with the Atmosphere. Am. J. Hyg. 78, 173-180 (1963).
  6. Mulieri, L. A., Hasenfuss, G., Ittleman, F., Blanchard, E. M., Alpert, N. R. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ. Res. 65, 1441-1449 (1989).
  7. Thum, T., Borlak, J. Butanedione monoxime increases the viability and yield of adult cardiomyocytes in primary cultures. Cardiovasc Toxicol. 1, 61-72 (2001).
  8. Verrecchia, F., Herve, J. C. Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Am. J. Physiol. 272, 875-885 (1997).
  9. Allen, T. J., Chapman, R. A. The effect of a chemical phosphatase on single calcium channels and the inactivation of whole-cell calcium current from isolated guinea-pig ventricular myocytes. Pflugers Arch. 430, 68-80 (1995).
  10. Mitcheson, J. S., Hancox, J. C., Levi, A. J. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc. Res. 39, 280-300 (1998).
  11. Piper, H. M., Probst, I., Schwartz, P., Hutter, F. J., Spieckermann, P. G. Culturing of calcium stable adult cardiac myocytes. J. Mol. Cell Cardiol. 14, 397-412 (1982).
  12. Claycomb, W. C., Palazzo, M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev. Biol. 80, 466-482 (1980).
  13. Eppenberger, M. E., et al. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev. Biol. 130, 1-15 (1988).
  14. Eppenberger, H. M., Hertig, C., Eppenberger-Eberhardt, M. Adult rat cardiomyocytes in culture A model system to study the plasticity of the differentiated cardiac phenotype at the molecular and cellular levels. Trends Cardiovasc Med. 4, 187-193 (1994).
  15. Arber, S., et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 88, 393-403 (1997).
  16. Toraason, M., Luken, M. E., Breitenstein, M., Krueger, J. A., Biagini, R. E. Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart. Toxicology. 56, 107-117 (1989).
  17. Worthington Biochemical Corp. . Worthington Tissue Dissection Guide. , (2012).
  18. Bashor, M. M. Dispersion and disruption of tissues. Methods Enzymol. 58, 119-131 (1979).
  19. Speicher, D. W., McCarl, R. L. Pancreatic enzyme requirements for the dissociation of rat hearts for culture. In Vitro. 10, 30-41 (1974).
  20. Gross, W. O., Schopf-Ebner, E., Bucher, O. M. Technique for the preparation of homogeneous cultures of isolated heart muscle cells. Exp Cell Res. 53, 1-10 (1968).
  21. Freshney, R. I. . Culture of animal cells : a manual of basic technique and specialized applications. , (2010).
  22. Lange, S., Perera, S., Teh, P., Chen, J. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol Biol Cell. , (2012).
  23. Sen, A., Dunnmon, P., Henderson, S. A., Gerard, R. D., Chien, K. R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263, 19132-19136 (1988).
  24. Evans, H. J., Goodwin, R. L. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development. Mol. Cell Biochem. 303, 189-199 (2007).
  25. Bakunts, K., Gillum, N., Karabekian, Z., Sarvazyan, N. Formation of cardiac fibers in Matrigel matrix. Biotechniques. 44, 341-348 (2008).
  26. Fink, C., et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14, 669-679 (2000).
  27. Nawroth, J. C., et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792-797 (2012).
  28. Das, M., et al. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials. 25, 5643-5647 (2004).
  29. DeQuach, J. A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 5, e13039 (2010).
  30. VanWinkle, W. B., Snuggs, M. B., Buja, L. M. Cardiogel: a biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell Dev. Biol. Anim. 32, 478-485 (1996).
  31. Karliner, J. S., Simpson, P. C., Taylor, J. E., Honbo, N., Woloszyn, W. Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium: comparison with serum-supplemented medium. Biochem Biophys Res Commun. 128, 376-382 (1985).
  32. Steinhelper, M. E., et al. Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am. J. Physiol. 259, H1826-H1834 (1990).
  33. Ahuja, P., Perriard, E., Perriard, J. C., Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 117, 3295-3306 (2004).
  34. Iwaki, K., Sukhatme, V. P., Shubeita, H. E., Chien, K. R. Alpha- beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J. Biol. Chem. 265, 13809-13817 (1990).
  35. Kirshenbaum, L. A., MacLellan, W. R., Mazur, W., French, B. A., Schneider, M. D. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J. Clin. Invest. 92, 381-387 (1993).
  36. Maeda, Y., et al. Adeno-associated virus-mediated transfer of endothelial nitric oxide synthase gene inhibits protein synthesis of rat ventricular cardiomyocytes. Cardiovasc Drugs Ther. 15, 19-24 (2001).
  37. Zhao, J., et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res. Cardiol. 97, 348-358 (2002).
  38. Djurovic, S., Iversen, N., Jeansson, S., Hoover, F., Christensen, G. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol. Biotechnol. 28, 21-32 (2004).
  39. van Bever, L., et al. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 287, 850-859 (2004).
  40. Sakai, K., Akima, M., Tsuyama, K. Evaluation of the isolated perfused heart of mice, with special reference to vasoconstriction caused by intracoronary acetylcholine. J. Pharmacol Methods. 10, 263-270 (1983).
  41. Reichelt, M. E., Willems, L., Hack, B. A., Peart, J. N., Headrick, J. P. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol. 94, 54-70 (2009).
  42. Tian, R. Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy. J. Vis. Exp. (42), e2069 (2010).
  43. Liao, R., Podesser, B. K., Lim, C. C. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol. 303, H156-H167 (2012).
  44. Zakharova, L., Nural-Guvener, H., Gaballa, M. A. Cardiac explant-derived cells are regulated by Notch-modulated mesenchymal transition. PLoS One. 7, e37800 (2012).
  45. Rudy, D. E., Yatskievych, T. A., Antin, P. B., Gregorio, C. C. Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev. Dyn. 221, 61-71 (2001).
  46. Thum, T., Borlak, J. Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor butanedione monoxime. Transplantation. 71, 543-552 (2001).
  47. Kabaeva, Z., Zhao, M., Michele, D. E. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am. J. Physiol. Heart. Circ. Physiol. 294, H1667-H1674 (2008).
check_url/pt/50154?article_type=t&slug=isolation-and-culture-of-neonatal-mouse-cardiomyocytes

Play Video

Citar este artigo
Ehler, E., Moore-Morris, T., Lange, S. Isolation and Culture of Neonatal Mouse Cardiomyocytes. J. Vis. Exp. (79), e50154, doi:10.3791/50154 (2013).

View Video