Summary

Chef-tdTomato kullanarak Zebrafish Somatosensoriyel Nöron Optogenetic Etkinleştirme

Published: January 31, 2013
doi:

Summary

Optogenetic teknikleri mümkün davranışına özgü nöronların katkısı çalışma yaptık. Biz bir diyot pompalı katı hal (DPSS) lazer ile channelrhodopsin varyant (şef) ifade ve yüksek hızlı video kamera ile ortaya çıkardı davranışların kaydedilmesi tek somatosensoriyel nöronlar aktive larva zebrafish bir yöntem açıklanmaktadır.

Abstract

Larva zebrafish basit nöral devrelerin gelişimi ve işlevi açıklayan bir model olarak ortaya çıkmaktadır. Dış döllenme, hızlı bir gelişme ve translucency nedeniyle, zebrafish özellikle nöral devre fonksiyonu araştırmak optogenetic yaklaşımlar için uygundur. Bu yaklaşımda, ışığa duyarlı iyon kanallarının açılıp inhibe bunları iradesi ve böylece belirli davranışları katkılarını değerlendirmek için deneyci sağlayan, belirli nöronlar olarak ifade edilmiştir. Larva zebrafish bu yöntemlerin uygulanması kavramsal olarak basit ama teknik detay optimizasyon gerektirir. Burada larva zebrafish somatosensoryel nöronlar, foto-aktive tek hücreler, bir channelrhodopsin varyantı ifade ve ortaya çıkan davranışları kaydetmek için bir yordam göstermek. Önceden kurulmuş yöntemleri için birkaç değişiklik tanıştırarak, bu yaklaşım kadar aktif tek nöronların davranışsal tepkiler için kullanılan olabiliren az 4 gün sonrası dölleme (dpf). Özellikle, biz tagged channelrhodopsin varyant, Chef-tdTomato ifade sürmek için bir somatosensoryel nöron artırıcı, CREST3, kullanarak bir transgen yarattı. Konfokal mikroskopi ile görüntülenebilir somatosensoriyel nöronlarda mozaik ifade, 1-hücreli dönem embriyoların sonuçları içine bu transgen enjekte. Aydınlatıcı, bir 473 nm DPSS lazer ışığı ile bu hayvanların hücreleri tanımlanan bir fiber optik kablo aracılığıyla rehberlik, yüksek hızlı bir video kamera ile kaydedilmiş ve kantitatif analiz edilebilir davranışları ortaya çıkarır. Bu teknik, herhangi zebrafish nöron aktive tarafından ortaya çıkarılan çalışma davranışlarına adapte olabilir. Genetik ya da farmakolojik tedirginlikler bu yaklaşımı birleştiren devre oluşumu ve işlevi araştırmak için güçlü bir yol olacaktır.

Introduction

Işık tanımlanmış dalga boyları ile nöronal uyarılabilirliği teşvik etmek ya da engellemek için optogenetic yöntemlerinin geliştirilmesi mümkün davranışı 1, 19, 21 kontrol nöral devrelerin nöronların farklı toplumlarda fonksiyonu çalışma yapmıştır. Bu teknikten sıklıkla nöron grupları aktive etmek için kullanılır, fakat aynı zamanda tek tek nöron aktive etmek için de kullanılabilir. Yarı saydam olduğundan Zebra balığı larvaları bu yöntemleri için özellikle uygundurlar, onların sinir sistemi hızla gelişir ve transgenik hayvanlar oluşturmak hızlı ve rutin. Ancak, önemli teknik engeller güvenilir tek bir nöron aktivasyon ulaşmak için aşılması gereken.

Tek zebrafish nöronların optogenetic aktivasyonu için bir prosedür optimize etmek için, biz somatosensoriyel nöronlar üzerinde duruldu. Kafa innerve trigeminal nöronlar ve Rohon-Sakal (: Zebra balığı larvaları iki nöron popülasyonları kullanarak somato çeşitli uyaranlara algılamakVücudun geri kalan innerve RB) nöronları,. Her trigeminal ve RB nöron deride yaygın şube uyaranlara ve downstream nöral devreleri bağlanır merkezi bir akson algılamak için bir periferik akson hedefleniyor. Hayvanlar bu tutarlı somatosensoryel devreleri, 18 5 oluşturdular gösteren, erken saat sonrası fertilizasyon (HPF) 21 olarak dokunmaya tepki. Larval gelişim süresince en az MAUTHNER hücrenin üzerine bazı trigeminal ve RB nöronlar sinaps, klasik kaçış yanıtı aktive ama delil biriken kaçış davranışının 2, 4 varyasyonlarını aydınlatır bağlantı farklı desenleri ile somato nöronların birden fazla sınıflar olduğunu göstermektedir etmek 10, 12, 14, 15, 16, 17. Bu yöntem geliştirilmesine Bizim motivasyon somato nöronların farklı sınıfların davranış işlevini karakterize etmek için, ama bu yaklaşım ilke lar nöronların hemen her nöron veya nüfus fonksiyonunu incelemek için kullanılabilirval zebrafish.

Douglass ve ark. Önceden aktive etmek için bir yöntem tarif Channelrhodopsin-2-eksprese eden, mavi ışık ile somatosensoriel nöronların kaçış davranışının 3 ortaya çıkarmak. Onların yaklaşımı somatosensoriyel nöronlarda ChR2-EYFP ifade sürücü isl1 geni bir artırıcı elemanı kullanılmalıdır. Bu, transgen, ancak, bir ikinci haberci bir birlikte-enjeksiyon gerektiren, nispeten zayıf floresan göstermek için rapor edildi, UAS :: GFP, ChR2-EYFP salgılayan hücrelerin görüntülenmesine izin verir. Bu yaklaşım 24-48 hpf arasındaki davranış tepkiler için kullanılan, ancak 72 hpf geçmişte bir yanıt ortaya çıkarmak asla. Bu yöntem çok erken larva dönemleri (24-48 hpf) de sinir devresi eğitim için çalışıyor iken Böylece, daha farklı davranışsal tepkiler görülür ve nöral devrelerin daha olgun yaşlı larvaları, nöral devreleri ve davranışsal tepkileri tanımlamak için yetersizdir.

Biz çalıştılarva RB nöronların alt popülasyonlarının işlevini karakterize etmek amacıyla bu tekniğin duyarlılık geliştirmek. Ifadesi iyileştirmek için bir floresan etiketli ışık aktif kanal ifadesi yükseltmek için lexA-VP16 ifade ve lexA operatör dizileri (4xLexAop) 11 bir streç sürmek için bir somatosensoriyel özgü artırıcı (CREST3) 20 kullanılır. Bu yapılandırma, ikinci bir muhabir co-ifade ve bize doğrudan her nöronda kanalın göreceli bolluk belirlemek için izin için ihtiyacı ortadan kaldırarak, kanalı ifade güçlendirilmiş. Lexa / LexAop dizisi kullanarak bize Gal4/UAS sistemi kullanmak zebrafish muhabiri satırlara transgen tanıtmak için izin ek avantajı vardı. Bu transgen Geçici ifade ifade düzeylerde sonuçlandı, ancak genellikle birkaç gün içinde hücre gövdesi ve bireysel nöronların akson projeksiyonları görselleştirmek için yeterince güçlüydü. Duyarl optimize etmekışığa Sığ biz kanal Chef, sarmal döngü EF 13 yaşında bir crossover site ile channelopsin-1 (Chop1) ve channelopsin-2 (Chop2) bir chimera oluşan channelrhodopsin türevi aktive ışık kullanılır. Bu kanal ChR2 gibi aynı dalga boyunda aktive, fakat ChR2 de dahil olmak üzere diğer yaygın olarak kullanılan kanal, daha daha duyarlı hale aktivasyonu için düşük bir ışık yoğunluğu gerektirir. Chef proteini bize kanal aktive olmadan protein ekspresyonu için ekran sağlayan kırmızı floresan proteini, tdTomato erimiş oldu. Bir ışık kaynağı olarak, bir diyot larvaları belirli bir bölgeye mavi bir ışık hassas, yüksek-enerjili darbe sunmak için bir fiber optik kablo birleştiğinde katı-hal (DPSS) lazer pompalanır kullanılır. Bu bize tek bir nöron kanalı ifade nadir transgenik hayvanlar bulmak için ihtiyacı ortadan kaldırarak, bireysel nöronların üzerine lazer ışığı odaklamak için izin verdi. Bu yaklaşımı kullanarak, biz, tek RB nöronlar aktive davranışsal tepkisi kaydetmek başardıkyüksek hızlı video kamera ve resim konfokal mikroskopi ile yüksek çözünürlükte aktive nöron s.

Protocol

Vaktinden önce aşağıdaki hazırlayın. 1. Optik Kablo hazırlayın Bir ~ 150 ° açı oluşturmak için bir Bunsen beki üzerine cam Pasteur pipeti ve konik boyun eriterek optik kablo için bir depolama birimi oluşturun. Bir tel kesici veya jilet kullanarak, dikkatle iki parçaya optik kabloyu kesti. Her bir parça, bir FC / PC adaptörü ve bir açık uçlu bir ucunu olmalıdır. Bir rezerv kablosu olarak tek parça depolayın. Kablosunun kesik ucuna 5.0 …

Representative Results

Şekil 1. Optik kablo kurmak. Fiber optik kablo (A) Katmanlar. Pasteur pipeti (B) Stripped fiber optik kablo. (C) Pasteur pipeti Fiber optik kablo mikromanipülatör kullanılarak yerleştirilir. Şekil 2. Enjeksiyon kalıp şablonu. <p cl…

Discussion

Biz canlı zebrafish tek RB nöronların optogenetic aktivasyonu için bir yaklaşım tarif var. Bizim yöntemi belirli somatosensoriyel nöronların bir floresan etiketli channelrhodopsin varyantı, şef-tdTomato 13, ifade geçici transgenesis kullanır. Bu yaklaşım, kolaylıkla diğer larva zebrafish hücre popülasyonu içinde kullanım için uyarlanabilir.

Bu yaklaşımı kullanarak biz sürekli şef-tdTomato ifade 34-48 hpf larva davranışsal tepkilere yol açtı. 5 V mavi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Biz lazer kurmak davranış deneyleri ve DPSS tavsiye için Fumi Kubo, Tod Thiele ve HerwigBaier (UCSF / Max Planck Enstitüsü) thank; şef-tdTomato deneylerinde yardım için MBL Nörobiyoloji Sahası'na Heesoo Kim ve Chiara Cerri; PetronellaKettunen (Göteborg Üniversitesi ) İlk optogenetic deneyler üzerinde işbirliği için; BaljitKhakh, Eric Hudson, Mike Baca ve teknik danışmanlık için John Milligan (UCLA) ve şef-tdTomato için Roger Tsien (UCSD) yaparız. AS: Bu çalışma NSF AMSP ve bir hibe için NRSA (5F31NS064817) ödülü (0.819.010 RIG) tarafından desteklenmiştir.

Materials

Name of Reagent/Material Company Catalog Number Comments
Materials
Glass Pasteur pipette Fisher 1367820B or equivalent (10-15 mm diameter)
200 μm optic fiber ThorLabs AFS200/220Y-CUSTOM Patch Cord, Length: 3 m, End A: FC/PC, End B: FC/PC, Jacket: FT030
50 μm optic fiber ThorLabs AFS50/125Y-CUSTOM Patch Cord, Length: 3 m, End A: FC/PC, End B: FC/PC, Jacket: FT030
Adjustable Stripping Tool ThorLabs AFS900 or Three-Hole Stripping Tool (FTS4)
Diamond Wedge scribe ThorLabs S90W
Flaming/Brown Micropipette Puller Sutter Instruments P-97 or equivalent
Borosilicate glass tubing with filament Sutter Instruments BF-100-78-10
Injection mold n/a n/a Figure 5
1.5 ml centrifuge tubes Any Any
Petri dish (100×15 mm) Any Any
Petri dish (60×15 mm) Any Any
Pressure injector ASI MPPI-3 or equivalent
Micromanipulator and metal stand Narashige M152 or equivalent
Disposable plastic pipettes Fisherbrand 13-711-7 or equivalent
Poker (Pin holder and Insect pin) Fine Science Tools, Inc. 26018-17 and 26000-70 or equivalent
Forceps Fine Science Tools, Inc. 11255-20 or equivalent
Microloader pipette tips Eppendorf 9300001007
28.5 °C incubator any any
42 °C heat block Any Any
Non-Sterile scalpel blades #11 Fine Scientific Tools, Inc. 10011-00 or equivalent
Dissecting scope Zeiss Stemi or equivalent
Fluorescent dissecting scope with standard filter Any any or equivalent
Confocal microscope Zeiss LSM 510 or 710 or equivalent with lasers for GFP and RFP, and 10x, 20x and 40x objectives
High speed camera AOS Technologies, Inc. X-PRI (130025-10) or equivalent
473 nm portable laser Crystal lasers CL-473-050 or higher power, with TTL option
S48 Stimulator Astro-Med, Inc. Grass Instrument division S48K or equivalent
FC/PC to FC/PC mating sleeve ThorLabs ADAFC1 May need for optic cable connection
Laser Safety Glasses ThorLabs LG10 or equivalent
24 culture plates Genesee 25-102 or equivalent
Single depression slides Fisher S175201 Or equivalent
Reagent
Instant ocean Aquatic Ecosystems IS50
Methylene blue Fisher S71325
Phenol red Sigma P4758
Agarose EMD 2125 or equivalent
Low Melt agarose Sigma A9045 or equivalent
PTU Sigma P7629
Tricaine Sigma A5040
blue/embryo water 10 L ddH2O
0.6 g Instant Ocean
6 drops methylene blue
phenol red (5 mg/ml in 0.2 M KCl)
100x PTU 0.150 g PTU
50 ml ddH2O
dissolve at 70 °C, shake often
aliquot and store at -20 °C
1x PTU 1 ml 100x PTU
99 ml blue/fish water
Tricaine stock solution 400 mg tricaine
97.9 ddH2O
~2.1 ml 1M Tris, pH9.0 adjust pH to ~7.0
store in 4 °C or -20 °C for long term storage

References

  1. Arrenberg, A. B., Del Bene, F., Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 106 (42), 17968-17973 (2009).
  2. Burgess, H. A., Johnson, S. L., Granato, M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav. 8 (5), 500-511 (2009).
  3. Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F., Engert, F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18 (15), 1133-1137 (2008).
  4. Downes, G. B., Granato, M. Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J. Neurobiol. 66 (5), 437-451 (2006).
  5. Drapeau, P., Saint-Amant, L., Buss, R. R., Chong, M., McDearmid, J. R., Brustein, E. Development of the locomotor network in zebrafish. Prog. Neurobiol. 68 (2), 85-111 (2002).
  6. Eisenhoffer, G. T., Rosenblatt, J. Live Imaging of Cell Extrusion from the Epidermis of Developing Zebrafish. J. Vis. Exp. (52), e2689 (2011).
  7. Graeden, E., Sive, H. Live Imaging of the Zebrafish Embryonic Brain by Confocal Microscopy. J. Vis. Exp. (26), e1217 (2009).
  8. Kague, E., Weber, C., Fisher, S. Mosaic Zebrafish Transgenesis for Evaluating Enhancer Sequences. J. Vis. Exp. (41), e1722 (2010).
  9. Kemp, H. A., Carmany-Rampey, A., Moens, C. Generating Chimeric Zebrafish Embryos by Transplantation. J. Vis. Exp. (29), e1394 (2009).
  10. Kohashi, T., Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28 (42), 10641-10653 (2008).
  11. Lai, S. L., Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9 (5), 703-709 (2006).
  12. Liao, J. C., Haehnel, M. Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J. Neurophysiol. 107 (10), 2615-2623 (2012).
  13. Lin, J. Y., Lin, M. Z., Steinbach, P., Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J. 96 (5), 1803-1814 (2009).
  14. Liu, K. S., Fetcho, J. R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron. 23 (2), 325-335 (1999).
  15. Liu, Y. C., Bailey, I., Hale, M. E. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). J. Comp. Physiol. A. Neuroethol. Sens Neural. Behav. Physiol. 198 (1), 11-24 (2012).
  16. Palanca, A. M., Lee, S. L., Yee, L. E., Joe-Wong, C., Trinh, L. A., Hiroyasu, E., Husain, M., Fraser, S. E., Pellegrini, M., Sagasti, A. New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev. Neurobiol. , (2012).
  17. Pujol-Martí, J., Zecca, A., Baudoin, J. P., Faucherre, A., Asakawa, K., Kawakami, K., López-Schier, H. Neuronal birth order identifies a dimorphic sensorineural map. J. Neurosci. 32 (9), 2976-2987 (2012).
  18. Saint-Amant, L., Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37 (4), 622-632 (1998).
  19. Szobota, S., et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron. 54 (4), 535-545 (2007).
  20. Uemura, O., et al. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev. Biol. 278 (2), 587-606 (2005).
  21. Wyart, C., Del Bene, F., Warp, E., Scott, E. K., Trauner, D., Baier, H., Isacoff, E. Y. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature. 461 (7262), 407-410 (2009).
  22. Yuan, S., Sun, Z. Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. J. Vis. Exp. (27), e1113 (2009).
check_url/50184?article_type=t

Play Video

Cite This Article
Palanca, A. M. S., Sagasti, A. Optogenetic Activation of Zebrafish Somatosensory Neurons using ChEF-tdTomato. J. Vis. Exp. (71), e50184, doi:10.3791/50184 (2013).

View Video