Summary

تطوير أميلوجينين-الشيتوزان هيدروجيل ل<em> في المختبر</em> إعادة نمو المينا مع واجهة الكثيفة

Published: July 10, 2014
doi:

Summary

في هذه المقالة، ونحن تصف بروتوكول للافتعال وهيدروجيل-أميلوجينين الشيتوزان لإعادة الإعمار المينا سطحية. نظمت النمو الموضع من بلورات الأباتيت في هيدروجيل في تشكيل واجهة المينا استعادة الكثيفة، التي من شأنها تحسين فعالية ومتانة الترميم.

Abstract

Biomimetic enamel reconstruction is a significant topic in material science and dentistry as a novel approach for the treatment of dental caries or erosion. Amelogenin has been proven to be a critical protein for controlling the organized growth of apatite crystals. In this paper, we present a detailed protocol for superficial enamel reconstruction by using a novel amelogenin-chitosan hydrogel. Compared to other conventional treatments, such as topical fluoride and mouthwash, this method not only has the potential to prevent the development of dental caries but also promotes significant and durable enamel restoration. The organized enamel-like microstructure regulated by amelogenin assemblies can significantly improve the mechanical properties of etched enamel, while the dense enamel-restoration interface formed by an in situ regrowth of apatite crystals can improve the effectiveness and durability of restorations. Furthermore, chitosan hydrogel is easy to use and can suppress bacterial infection, which is the major risk factor for the occurrence of dental caries. Therefore, this biocompatible and biodegradable amelogenin-chitosan hydrogel shows promise as a biomaterial for the prevention, restoration, and treatment of defective enamel.

Introduction

Dental enamel is the hard mineralized surface of human teeth. It is composed of numerous needle-like apatite crystals, which are bundled in organized, parallel prisms to ensure the unique mechanical strength and biological protection that enamel provides1-2. Unlike other mineralized tissues, such as bone and dentin, mature enamel is acellular and cannot regenerate itself after substantial mineral loss1-2, which often occurs as dental caries or erosion. Commercially available products such as fluoride containing varnishes, tooth pastes and mouthwashes are effective in re-mineralizing enamel but none of them have the potential to promote the formation of organized apatite crystals. Clinically, the conventional treatment for enamel repair involves a filling procedure with artificial materials such as amalgam, ceramics, or composite resin 3. However, these materials usually do not interface well with the natural tissue surrounding the lesion, because their structures, components and properties are different from the natural enamel. As a result, secondary caries frequently develops overtime at the interface between the tooth and foreign materials. Therefore, in situ regrowth of enamel with a dense interface is an attractive target for the fields of materials science and stomatology. One particularly promising way to achieve this purpose is biomimetic synthesis of enamel-like material on the enamel surface. Recently, numerous in vitro attempts have been made to prepare enamel-like materials using biomimetic systems that contain nano-apatites or different organic additives 4-12. However, developing the optimal biomimetic strategy to promote remineralization crystals to achieve a perfect dense interface is still a challenge.

During enamel mineralization, the oriented growth and elongation of apatite crystals is regulated by an amelogenin-rich matrix 1,13-14. To mimic the organic matrix in developing enamel, herein we describe a detailed protocol for fabricating an amelogenin-chitosan (CS-AMEL) hydrogel for in situ enamel regrowth on an acid-etched enamel surface used as a model for erosive lesions. As “the most versatile growth media” for crystals 15, hydrogel matrices have an advantage over a solution system since clinically they are easier to handle. Moreover, CS-AMEL is biocompatible, biodegradable, and has unique antimicrobial and adhesion properties that compare favorably with other biomimetic systems for dental applications 16. Importantly, the in situ mineralization of apatite crystals on the enamel surface provides a dense interface between the repaired layer and the natural enamel, which can potentially improve the durability of restorations and prevent the formation of new caries at the margin of the restoration.

Protocol

تم استخراج الأضراس الإنسان وفقا للإجراءات القياسية لاستخراج في كلية طب الأسنان OSTROW من جامعة جنوب كاليفورنيا، والتعامل معها على موافقة مجلس المراجعة المؤسساتي. 1. إعداد الأسنان حمض محفورا-شريحة <li style=";text-…

Representative Results

وأظهرت فعالية بروتوكول الموصوفة هنا عن طريق المسح الضوئي المجهر الإلكتروني (SEM)، اختارت منطقة حيود الإلكترون (سعيد) وحيود الأشعة السينية (XRD) يحلل. بعد الترميم من قبل أميلوجينين-الشيتوزان (CS-AMEL) هيدروجيل لمدة 7 أيام، وتشكلت طبقة المينا مثل بسماكة 15 ميكرون على سطح المينا…

Discussion

في حين أن المحتوى المعدني من المينا وعالية مما يجعلها أصعب الأنسجة المعدنية في جسم الإنسان، وهذا هو bioceramic عرضة لعمليات التنقية، والتي تحدث في كثير من الأحيان كما تسوس الأسنان أو التآكل. طفرات الجينات يمكن أيضا أن يسبب المينا رقيقة أو ناعمة مما يؤدي إلى سلسلة من الأمر…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Steven Nutt and Mr. Yuzheng Zhang for assistant with the Focus Ion Beam, and the Center for Electron Microscopy and Microanalysis (CEMMA) at USC for electron microscopy. Research was supported by NIH-NIDCR grants; DE-13414 and DE-020099 to J.M.O.

Materials

Name Company Catalog Number Comments/Description
Material/ Reagent
Human Third Molar  Ostrow School of Dentistry of the University of Southern California  N/A The human molars were extracted following the standard procedures for extraction at the Ostrow School of Dentistry of the University of Southern California and handled with the approval of the Institutional Review Board.
Recombinant Pocine Amelogenin Expression and purification  in lab N/A rP172, full-length 
Chitosan  Sigma-Aldrich 448877 medium molecular weight, 75-85% deacetylated
Phosphoric Acid  VWR AA033266
Acetic Acid Glacial VWR A036289
Sodium Hydroxide VWR BDH9292
Calcium Chloride  Sigma-Aldrich 223506
Dibasic Sodium Phosphate Anhydrous VWR BDH0316
BL21-CodonPlus (DE3)-RP  Agilent Technologies Inc. 230255
Ammonium Sulfate VWR BDH8001
Trifluoroacetic Acid VWR AAAL06374
Acetonitrile VWR BDH1103
Magnesium Chloride  VWR BDH0244
Potassium Dihydrogen Phosphate  VWR BDH9268
Potassium Chloride  VWR BDH0258
Ammonium Chloride  VWR AAAA15000
HEPES (4-(2-Hydroxyethyl)piperazine-1-ethane-sulfonic acid) VWR AAA14777
Sodium Fluoride  VWR AA11561
Tris-Buffered Saline Bio-Rad 170-6435 10× TBS
Bovine Serum Albumin EMD Millipore  12659 CalBioChem, Albumin, Bovine Serum, Fraction V, Low Heavy Metals 
Triton X-100 EMD Millipore  TX1568-1
Chicken Anti-Amelogenin N/A N/A A gift from Prof. Malcolm Snead, University of Southern California
Bovine Anti-Chicken IgY-FITC Santa Cruz Biotechnology Sc-2700
Equipments
High Performance Liquid Chromatography System Agilent Technologies Inc. Varian Prostar 210
C4 column Phenomenx  Jupiter 5μ 300A
Scanning Electron Microscopy  JEOL  JSM-7001
FIB-SEM  JEOL  JIB-4500
Transmission Electron Microscopy  JEOL JEM-2100F
Digital Low Speed Diamond Saw MTI Corporation SYJ-150
Fluorescence Microscopy Leica DMI3000 B
Ultrasonic Cleaner  Branson  2510 42 kHz, 100 W
Nano-indenter  Agilent Technologies Inc. MTS XP

Referências

  1. Moradian-Oldak, J. Protein- mediated enamel mineralization. Frontiers in Bioscience. 17, 1996-2023 (2012).
  2. Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., Stupp, S. I. Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel. Chem. Rev. 108, 4754-4783 (2008).
  3. Onuma, K., Yamagishi, K., Oyane, A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J. Cryst. Growth. 282, 199-207 (2005).
  4. Xie, R. Q., Feng, Z. D., Li, S. W., Xu, B. B. EDTA-Assisted Self-Assembly of Fluoride-Substituted Hydroxyapatite Coating on Enamel Substrate. Cryst. Growth Des. 11, 5206-5214 (2011).
  5. Li, L., et al. Bio-Inspired Enamel Repair via Glu-Directed Assembly of Apatite Nanoparticles: an Approach to Biomaterials with Optimal Characteristics. Advanced Materials. 23, (2011).
  6. Yin, Y. J., Yun, S., Fang, J. S., Chen, H. F. Chemical regeneration of human tooth enamel under near-physiological conditions. Chem. Commun. , 5892-5894 (2009).
  7. Fan, Y., Sun, Z., Moradian-Oldak, J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 30, 478-483 (2009).
  8. Li, L., et al. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 18, 4079-4084 (2008).
  9. Chen, H., et al. Acellular synthesis of a human enamel-like microstructure. Advanced Materials. 18, (2006).
  10. Yamagishi, K., et al. A synthetic enamel for rapid tooth repair. Nature. 433, 819-819 (2005).
  11. Bleek, K., Taubert, A. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomaterialia. 9, 6283-6321 (2013).
  12. Fletcher, J., Walsh, D., Fowler, C. E., Mann, S. Electrospun mats of PVP/ACP nanofibres for remineralization of enamel tooth surfaces. Crystengcomm. 13, 3692-3697 (2011).
  13. Fang, P. -. A., Conway, J. F., Margolis, H. C., Simmer, J. P., Beniash, E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America. 108, 14097-14102 (2011).
  14. Yang, X., et al. How Amelogenin Orchestrates the Organization of Hierarchical Elongated Microstructures of Apatite. Journal of Physical Chemistry B. 114, 2293-2300 (2010).
  15. Li, H., Fujiki, Y., Sada, K., Estroff, L. A. Gel incorporation inside of organic single crystals grown in agarose hydrogels. Crystengcomm. 13, 1060-1062 (2011).
  16. Ruan, Q., Zhang, Y., Yang, X., Nutt, S., Moradian-Oldak, J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 9, 7289-7297 (2013).
  17. Hu, C. C., et al. Cloning, cDNA sequence, and alternative splicing of porcine amelogenin mRNAs. Journal of Dental Research. 75, 1735-1741 (1996).
  18. Bromley, K. M., et al. Amelogenin Processing by MMP-20 Prevents Protein Occlusion Inside Calcite Crystals. Cryst. Growth Des. 12, 4897-4905 (2012).
  19. Fan, Y., Sun, Z., Abbott, C., Moradian-Oldak, J. A enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 28, 3034-3042 (2007).
  20. Wright, J. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am. J. Med. Gent. A. 140 (23), 2547-2555 (2006).
  21. Eimar, H., et al. Regulation of enamel hardness by its crystallographic dimensions. Acta Biomaterialia. 8, 3400-3410 (2012).
  22. Ruan, Q., Siddiqah, N., Li, X., Nutt, S., Moradian-Oldak, J. Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res. , (2014).
  23. Pouget, E. M., et al. The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM. Science. 323, 1455-1458 (2009).
  24. Gebauer, D., Volkel, A., Colfen, H. Stable Prenucleation Calcium Carbonate Clusters. Science. 322, 1819-1822 (2008).
check_url/pt/51606?article_type=t

Play Video

Citar este artigo
Ruan, Q., Moradian-Oldak, J. Development of Amelogenin-chitosan Hydrogel for In Vitro Enamel Regrowth with a Dense Interface. J. Vis. Exp. (89), e51606, doi:10.3791/51606 (2014).

View Video