Summary

在髓系细胞动态实时成像<em>装甲运兵车<sup>最小/ +</sup</em>肠道肿瘤通过旋转盘共聚焦显微镜

Published: October 06, 2014
doi:

Summary

By using transgenic reporter mice and injectable fluorescent labels, long-term intravital spinning disk confocal microscopy enables direct visualization of myeloid cell behavior into intestinal adenoma in the ApcMin/+ colorectal cancer model.

Abstract

髓系细胞是在肿瘤内最丰富的免疫细胞和已被证明能促进肿瘤进展。现代活体成像技术使观察脏器内部活细胞行为的,但可以在一些类型的癌症,由于器官和肿瘤的辅助具有挑战性,例如肠。直接观察肠道肿瘤以前尚未报道。这里描述的手术过程可直接观察活体小鼠肠道内的肿瘤骨髓细胞动力学的利用转基因荧光报告小鼠和注射示踪剂或抗体。为了这个目的,一台四色,多区域,微透镜式旋转盘共聚焦显微镜,允许长期连续成像的快速图像捕获已被使用。 装甲运兵车 最小 / +小鼠的发展在小肠多发性腺瘤是正交与C-FMS-EGFP小鼠可视化骨髓细胞和ACTB-ECFP老鼠以可视化的隐窝肠上皮细胞。用于标记不同肿瘤成分,如血管和嗜中性粒细胞,并通过浆膜表面定位的肿瘤进行成像的方法的程序也被描述。从几个小时影像编定时短片允许髓细胞行为的原位肠道微环境的分析。

Introduction

大量证据现在表明,在肿瘤微环境,包括异质细胞群,包括成纤维细胞,内皮细胞,免疫和炎症细胞,细胞外基质,和可溶性因子,通过促进几乎所有起着起始和实体瘤的进展的关键作用癌症1标志。的确,在肿瘤进展,也有发展,以产生微环境有利于恶性2转化的肿瘤细胞和基质细胞之间恒定的动态相互作用。间的免疫细胞浸润的肿瘤微环境,骨髓细胞是最丰富3。肿瘤相关巨噬细胞中的组成(TAM),髓源抑制细胞(肌源性干细胞),树突状细胞(DC)和嗜中性粒细胞(中性粒细胞),骨髓细胞从骨髓中招募和渐进渗透的肿瘤,释放出细胞因子,生长因子和蛋白酶的可以促进肿瘤的生长和扩散4。肿瘤细胞和骨髓细胞之间的串扰是复杂的,而是动态的。因而它们之间的相互作用的性质的认识是用于确定为什么这些细胞促进癌症的进展,而不是参与抗肿瘤免疫应答的关键,并且可以有助于发现新的目标,以控制它。

直接观察活体显微镜提供了活体小鼠5的组织中细胞动力学信息。四色,多区域,微透镜式旋转盘共聚焦系统被设计成乳腺肿瘤6中学习基质细胞。这种方法使长期连续成像,并包括若干优点,诸如(a)快速图像获取,以减少运动伪影,(二)长期麻醉,(三)四种颜色的采集遵循不同的细胞类型,(四)的荧光标记不同肿瘤部件,和(e)观察的不同肿瘤微环境机智欣相同的鼠标,避免鼠标鼠标的变化7-9。通过该技术,不同的细胞行为已有报道在乳腺肿瘤病毒(MMTV)启动子驱动的多瘤病毒中间Ť癌基因(PyMT)模型,该模型显示肿瘤发生的渐进阶段。调节性T-淋巴细胞(Treg细胞,由Foxp3的EGFP转基因的可视化)优先在接近迁移到血管而树突(CD11c的-DTR-EGFP),癌相关成纤维细胞(FSP1 + / +-EGFP)和髓样细胞(C-fms的-EGFP)显示出更高的运动在肿瘤周边比肿瘤块内。急性全身缺氧的条件下,细胞迁移是不同的:停止调节性T细胞相反,骨髓细胞是继续往前6迁移。此外,在相同的小鼠模型中,已经显示与肿瘤阶段的多柔比星的敏感性的变化,药物的分布与药物的反应,以及多柔比星处理导致CCR2依赖招募骨髓细胞的肿瘤。因此,实时成像,也可用于深入了解药物反应的原位和耐药10,11的生物。

性腺瘤性息肉病(APC)基因突变通常发生在人类结直肠腺瘤和癌12APC基因导致家族性腺瘤性息肉病(FAP),它赋予了极高的风险结肠癌13的一个副本变异。在小鼠品系装甲运兵车 最小 / +进行截断突变的APC基因的密码子850和自发发展多种肠道腺瘤各地小肠14-16。肠的长期活体成像是因为该过程的侵袭的具有挑战性的,因为在打开腹腔是必要的访问权限的肠。短期实时成像STudies先前已公布在健康肠17,18,但长期直接观察肠道肿瘤尚未见报道。一种外科手术已被设计和精制通过肠道的浆膜表面显现肿瘤,使用先前用于图像的乳腺肿瘤6,10的活体旋转盘显微镜系统。在本文中,一个协议描述了允许一个由通过 APC调节最小 / +小鼠跟随在小肠中的肿瘤内的髓样细胞的行为。

Protocol

注:所有的动物实验均按照批准的机构动物照顾与使用委员会(IACUC),加州大学旧金山分校的程序进行。所有成像实验是非生存过程和动物立即安乐死图像采集结束后。 1代小鼠注:APC 最小/ +小鼠,携带突变的APC基因上,自发形成50-100腺瘤在小肠。 横装甲运兵车最小/ +小鼠与ACTB-ECFP线,其表达ECFP下,肌动蛋?…

Representative Results

通过使用旋转盘共聚焦显微镜,非肿瘤和肿瘤组织在小肠装甲运兵车最小/ +的; ACTB-ECFP;的c-FMS-ECFP小鼠可以从浆膜表面可视化。成像后,照相机软件用于分析和调整的采集( 附图1)。静脉注射(IV)注射荧光2000 kDa的葡聚糖-罗丹明B和莱曼6G 647结合的抗体后,血管和中性粒细胞可分别检测到( 图1)。淋巴集结是淋巴组织的聚集和全骨髓细胞可?…

Discussion

在本文中,详细的协议描述中纺肠道肿瘤骨髓细胞动力学盘共聚焦成像几个小时的活的动物,从肠道的浆膜面成像。

避免炎症反应,有最佳的生理条件下,在肠道的摄像,必须在完整器官进行。然而,从肠的浆膜侧成像是具有挑战性的,由于光具有到达上皮之前要经过不同的组织层,例如平滑肌。着眼于上皮可以在某些方面是困难的,特别是在肌动蛋白-ECFP报告小鼠由于肌动…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢英于APC最小/ +小鼠基因分型。这项研究是由来自INSERM基金和美国国立卫生研究院资助(CA057621和AI053194)的支持。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
ApcMin/+ mice Jackson Laboratory 2020
ACTB-ECFP mice Jackson Laboratory 3773
cfms-EGFP mice Jackson Laboratory 18549
2,000 kDa Dextran, rhodamine-conjugated Invitrogen D7139
Isoflurane Butler Animal Health Supply 29450
Nitrogen UCSF
Oxygen UCSF
1X PBS UCSF cell culture facility
Saline Buffer UCSF cell culture facility
Anti-mouse Ly-6G (GR1) antibody AF647 UCSF Monoclonal antibody core Stock 1mg/ml. Use at 7ug/mouse
Atropine LARC UCSF Use at 1mg/Kg mouse
Alcohol wipes Becton Dickinson 326895
28G1/2 insulin syringe Becton Dickinson 329465
Remium cover glass Fisher Scientific 12-548-5M 24×50-1
Superfrost plus microscope slides Fisher Scientific 12-550-15 25x75x1mm
Krazy glue Office Max 7111555
Betadine LARC UCSF
Heat blanket Gaymar Industries
Hot bead sterilizer Fine Science Tools 18000-45 Turn ON 30min before use
Cotton tipped apllicators 6-inch Electron Microscopy Sciences 72310-10
Anesthesia system Summit Anesthesia Support
Inverted microscope Carl Zeiss Inc Zeiss Axiovert 200M
stage insert Applied Sientific Instrumentation
Mouse Ox oximeter, software and sensors Starr Life Sciences MouseOx
Nebulizer Summit Anesthesia Support
Imaris Bitplane
mManager Vale lab, UCSF Open-source software
ICCD camera Stanford Photonics XR-Mega-10EX S-30
Spinning disk confocal sacan-head Yokogawa Corporation CSU-10b

Referências

  1. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144 (5), 646-674 (2011).
  2. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  3. Schouppe, E., De Baetselier, P., Van Ginderachter, J. A., Sarukhan, A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology. 1 (7), 1135-1145 (2012).
  4. Egeblad, M., Nakasone, E. S., Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 18 (6), 884-901 (2010).
  5. Lohela, M., Werb, Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev. 20 (1), 72-78 (2010).
  6. Egeblad, M., et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mech. 1 (2-3), 155-167 (2008).
  7. Ewald, A. J., Werb, Z., Egeblad, M. Dynamic long-term in vivo imaging of tumor-stroma interactions in mouse models of breast cancer using spinning-disk confocal microscopy. Cold Spring Harb Protoc. 2011 (2), (2011).
  8. Ewald, A. J., Werb, Z., Egeblad, M. Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb Protoc. 2011 (2), (2011).
  9. Ewald, A. J., Werb, Z., Egeblad, M. Preparation of mice for long-term intravital imaging of the mammary gland. Cold Spring Harb Protoc. 2011 (2), (2011).
  10. Nakasone, E. S., Askautrud, H. A., Egeblad, M. Live imaging of drug responses in the tumor microenvironment in mouse models of breast cancer. J Vis Exp. (73), e50088 (2013).
  11. Nakasone, E. S., et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 21 (4), 488-503 (2012).
  12. Walther, A., et al. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 9 (7), 489-499 (2009).
  13. Fearon, E. R. Molecular genetics of colorectal cancer. Annu Rev Pathol. 6, 479-507 (2011).
  14. Moser, A. R., Pitot, H. C., Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 247 (4940), 322-324 (1990).
  15. Su, L. K., et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 256 (5057), 668-670 (1992).
  16. Watson, A. J., et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology. 129 (3), 902-912 (2005).
  17. McDole, J. R., et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 483 (7389), 345-349 (2012).
  18. Xu, C., Shen, Y., Littman, D. R., Dustin, M. L., Velazquez, P. Visualization of mucosal homeostasis via single- and multiphoton intravital fluorescence microscopy. J Leukoc Biol. 92 (3), 413-419 (2012).
  19. Haigis, K. M., et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 40 (5), 600-608 (2008).
  20. Sansom, O. J., et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A. 103 (38), 14122-14127 (2006).
  21. Janssen, K. P., et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology. 131 (4), 1096-1109 (2006).
  22. Takaku, K., et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell. 92 (5), 645-656 (1998).

Play Video

Citar este artigo
Bonnans, C., Lohela, M., Werb, Z. Real-time Imaging of Myeloid Cells Dynamics in ApcMin/+ Intestinal Tumors by Spinning Disk Confocal Microscopy. J. Vis. Exp. (92), e51916, doi:10.3791/51916 (2014).

View Video