Summary

对白细胞从流程的分析招聘基质细胞的影响

Published: January 07, 2015
doi:

Summary

发炎的内皮从流动招募白细胞的能力是由间充质基质细胞调节。我们描述两个体外结合原代人细胞,它可以用于从流动评估中性粒细胞募集和检查的作用是间充质基质细胞在调节这个过程中发挥的模型。

Abstract

基质细胞调节通过与邻近血管内皮细胞的串扰炎症时白细胞流传的招聘。在这里,我们介绍两个体外 “血管”模型研究了发炎的内皮细胞流动循环中性粒细胞的招募。这些模型的一个主要优点是分析中的白细胞粘附级联的每个步骤,以便,如将发生在体内的能力。我们还描述了这两种模式如何可以适于研究的基质细胞的作用,在这种情况下,间充质干细胞(MSC),在调节白细胞募集。

初级内皮细胞单独或一起进行培养与人类的MSC在Ibidi microslides或在Transwell滤膜24小时的相对侧直接接触。培养物刺激肿瘤坏死因子(TNFα)4小时,掺入基于流的粘附试验。嗜中性粒细胞的丸灌注在内皮4分钟。嗜中性粒细胞流入和它们与内皮相互作用的捕获是可视化通过相衬显微镜。

在这两种模式,细胞因子刺激增加流动中性粒细胞内皮招聘呈剂量依赖性。招募嗜中性粒细胞的行为的分析表明剂量依赖性减少轧制和通过内皮的剂量依赖性增加轮回。在共培养,MSC抑制中性粒细胞粘附到TNFα刺激的内皮细胞。

我们基于流的粘连模型模拟白细胞招聘的初始阶段的循环。除了白细胞,它们可以被用来检查其它类型的细胞,如治疗给药的MSC或循环肿瘤细胞的募集。我们的多层共培养模型已经表明,MSC与内皮通信以修改其响应于促炎细胞因子,alteri纳克中性粒细胞的招募。采用这种模式需要进一步研究,充分了解来自不同组织和条件(炎症性疾病或癌症)如何基质细胞在炎症过程中影响白细胞的招募。

Introduction

炎症是对微生物感染或组织损伤的保护性反应,需要白细胞条目的紧调节进入和退出从发炎组织,以允许第1,2。内皮细胞(EC),该行的血管,循环白细胞和组织驻留基质细胞之间的串扰是用于协调该过程3是必不可少的。然而,白细胞不受控制招聘和他们的无效间隙支撑的慢性炎症性疾病4的开发。我们目前在健康和疾病白细胞募集的理解是不完整的,还需要更可靠的模型来分析该过程。

通过血管EC的毛细血管后静脉支持从血液内白血球的招聘机制已经很好地描述1,2,5。循环白细胞是通过专门的受体( 例如,VCAM-1,E-选择素,P-选择素)捕获该正在上调对发炎内皮。这些短暂的相互作用使白细胞与表面结合趋化因子和脂质衍生的介质(或内皮细胞间质或起源)的激活白细胞6 11表达整合互动。这反过来又稳定穿过内皮和进入组织12- 15粘附和驱动器迁移。在组织,招募白细胞受到影响他们的运动,功能和存活16,17基质衍生剂。越来越多的证据有力地表明,信号在招聘过程中条件的白细胞在接下来的每个阶段获得。然而,我们的白细胞招聘的认识仍然不完整,很少有人知道组织内的组件整形白细胞的运动。

在伯明翰,我们已经开发出多种体外 “血管”的车型,从研究白细胞招聘流9,18,19。我们现在明白了,白细胞募集血管EC充当即时监管响应变化的局部微环境。具体地,组织驻留基质细胞可以通过与邻近血管EC交谈来影响在招募3的作用积极调节炎症反应,这部分。我们以前曾表明,各种基质细胞调制EC中以支持粘附和白细胞的迁移以组织特异性方式的能力,而且,这些效果变得改变在慢性疾病13,16,20,21。因此,基质细胞建立组织'地址代码'定义每个炎性应答22的上下文中。最近,我们已经表明,骨髓来源的MSC(BMMSC)有力地下调欧盟的细胞因子的反应,导致减少在这两个中性粒细胞的招募和淋巴细胞23。

该机制GOVerning招聘阐明在体外已大量使用纳入一个单一的细胞类型( 例如,EC)或蛋白质隔离检测。然而,这些研究并没有考虑到局部组织环境的影响( 即,基质细胞的存在下)对招募白细胞及其随后迁移进入组织。在这里,我们描述了两个基于流的方法,其中的基质细胞,特异性间质干细胞(MSC),是共培养EC 23。这种模型允许我们检查基质细胞对内皮反应的影响,特别是它们从流支持白细胞募集的能力。

Protocol

1.隔离初级人内皮细胞和间充质干细胞的培养和分离和培养人脐静脉内皮细胞(HUVEC): 放脐带上用纸巾托盘和喷雾用70%的乙醇。放置在组织培养罩。识别静脉导管插入并在两端。周围放置的空心端部的电缆扎带将其固定。 洗出静脉血使用PBS中的注射器。填充注射器与空气和通过静脉拆除和丢弃残留的PBS。 解冻10毫克/毫升胶原酶IA和稀释在PBS中1:10的(钙和氯化镁),…

Representative Results

最初,我们分析了在使用Ibidi的MicroSlide模型( 第7 – 9)从流嗜中性粒细胞的募集刺激EC与TNFα的影响。在不存在TNFα,如果小任何中性白细胞粘附到内皮细胞单层( 图2A)的。这是意料之中的,因为未处理的/休息EC不表达必需的粘附分子(选择素)或趋化因子,以支持结合25,26。与此相反,细胞因子的刺激显著增加中性粒细胞粘附到内皮细胞中以剂量依赖的方式( <…

Discussion

在这里,我们介绍两个体外 “血管”的模型来研究由内皮细胞发炎循环中性粒细胞的招募。这些模型的一个主要优点是分析中的白细胞粘附级联的每个步骤,以便,如将发生在体内的能力。我们先前观察到的剂量依赖性增加中性粒细胞粘附和轮回通过TNFα刺激的EC 9,29。我们还描述了这两种模式如何适应学习基质细胞对白细胞招聘的影响。这里,MSC共培养用乳油在Ibidi的MicroSli…

Declarações

The authors have nothing to disclose.

Acknowledgements

Umbilical cords were collected with the assistance of the Birmingham Women’s Health Care NHS Trust. HMM was supported by an Arthritis Research UK Career Development Fellowship (19899) and Systems Science for Health, University of Birmingham (5212).

Materials

Collagenase Type Ia Sigma C2674 Dilute in 10ml PBS to get a final concentration of 10mg/ml. Store at -20°C in 1ml aliquots.
Dulbecco's PBS Sigma D8662 With calcium and magnesium chloride. Keep sterile and store at room temperature.
1X Medium M199 Gibco 31150-022 Warm in 37 °C water bath before use.
Gentamicin sulphate Sigma G1397 Store at 4°C. Add to M199 500ml bottle.
Human epidermal growth factor Sigma E9644 Store at -20°C in 10µl aliquots.
Fetal calf serum (FCS) Sigma F9665 FCS must be batch tested to ensure the growth and viability of isolated EC. Heat inactivate at 56°C. Store in 10ml aliquots at -20°C.
Amphotericin B Gibco 15290-026 Potent and becomes toxic within a week so fresh complete HUVEC medium must be made up every week. Store at -20°C in 1ml aliquots.
Hydrocortisone Sigma H0135 Stock is in ethanol. Store at -20°C in 10µl aliquots.
Collagenase Type II Sigma C6885 Dilute stock in PBS to a final concentration of 100mg/ml. Store at -20°C in 100µl aliquots.
Hyaluronidase Sigma H3631 Dilute stock in PBS to a final concentration of 20,000U/ml. Store at -20°C in 100µl aliquots.
100µm cell strainer for 50ml centifuge tube Scientific Lab Supplies (SLS) 352360 Other commercially available cell strainers (e.g. Greiner bio-one) can also be used.
DMEM low glucose Biosera LM-D1102/500 Warm in 37 °C water bath before use.
Penicillin/Streptomycin mix Sigma P4333 Store at -20°C in 1ml aliquots.
25cm2 tissue culture flask SLS 353109
75cm2 tissue culture flask SLS 353136
Bone marrow mesenchymal stem cells vial Lonza PT-2501 Store in liquid nitrogen upon arrival. Cells are at passage 2 upon arrival but are designated passage 0. Exapand to passage 3 and store in liquid nitrogen for later use.
Mesenchymal stem cell growth medium (MSCGM) Lonza PT-3001 Warm in 37 °C water bath before use. For Cell Tracker Green staining use medium without FCS.
EDTA (0.02%) solution Sigma E8008 Store at 4°C. Warm in 37°C water bath before use.
Trypsin solution Sigma T4424 Store at -20°C in 2ml aliquots. Thaw at room temperature and use immediately.
Cryovials Greiner bio-one 2019-02 Keep on ice before adding before adding cell suspension.
Mr. Frosty Freezing Container Nalgene 5100-0001 Store at room temperature. When adding cryovials with cells store at -80°C for 24h before transfrring cells to liquid nitrogen.
Ibidi u-Slide VI (0.4), T/C treated, sterile Ibidi IB-80606 Alternative models include glass capillaries, Cellix Biochips (www.cellixltd.com), BioFlux Plates (www.fluxionbio.com/bioflux/) and GlycoTech parallel plate flow chambers (http://www.glycotech.com/apparatus/parallel.html).
Cell tracker green dye Life technologies C2925 Store in 5µl aliquots at -20°C. Dilute in 5ml prewarmed (at 37°C) MSCGM.
Cell counting chambers Nexcelom SD-100 Alternatively a haemocytometer can be used.
Cellometer auto T4 cell counter Nexcelom Auto T4-203-0238
Tumor necrosis factor α (TNFα) R&D Systems 210-TA-100 Dilute stock in PBS to a final concentration of 100,000U/ml. Store at -80°C in 10µl aliquots.
6-well, 0.4µm PET Transwell filters SLS 353090
K2-EDTA in 10ml tubes Sarstedt Store at room temperature.
Histopaque 1119 Sigma 11191 Store at 4°C. Warm to room temperature before use.
Histopaque 1077 Sigma 10771 Store at 4°C. Warm to room temperature before use.
10ml round bottomed tube Appleton Woods SC211 142 AS
7.5% BSA Fraction V solution Life technologies 15260-037 Store at 4°C.
20ml Plastipak syringes BD falcon 300613
5ml Plastipak syringes BD falcon 302187
2ml Plastipak syringes BD falcon 300185
3M hypo-allergenic surgical tape 9m x 2.5cm Micropore 1530-1 Use to secure the syringe tap onto the wall of the perspex chamber.
Silicon rubber tubing, internal diameter/external diameter (ID/OD) of 1/3mm (thin tubing) Fisher Scientific FB68854 Cut silicon tubing to the appropriate size. All tubing leading directly to the electronic microvalve must be thin.
Silicon rubber tubing ID/OD of 2/4mm (thick tubing) Fisher Scientific FB68855
Portex Blue Line Manometer tubing Smiths 200/495/200 Tubing leading to the syringe pump.
3-way stopcock BOC Ohmeda AB
Glass 50ml syringe for pump Popper Micromate 550962 Must be primed prior to use by removing any air bubbles.
Glass coverslip Raymond A Lamb 26x76mm coverslips made to order. Lot number 2440980.
Parafilm gasket American National Can Company Cut a 26x76mm piece of parafilm using an aluminium template and cut a 20x4mm slot into it using a scalpel 10a. Gasket thickness is approximately 133µm.
Two perspex parallel plates Wolfson Applied Technology Laboratory Specially designed chamber consisting of parallel plates held together by 8 screws. The lower plate has a viewing slot cut out in the middle and a shallow recess milled to allow space for the coverslip, filter and gasket. The upper perspex plate has an inlet and outlet hole positioned over the flow channel.
Electronic 3-way microvalve with min. dead space Lee Products Ltd. LFYA1226032H Electronically connected to a 12 volt DC power supply.
Syringe pump for infusion/withdrawal (PHD2000) Harvard Apparatus 70-2001 Set the diameter to 29mm and refill (flow) rate.
L-shaped connector Labhut LE876 To attach to the inlet and outlet ports onto the Ibidi microslide channel.
Video camera Qimaging 01-QIC-F-M-12-C Connected to a computer which enables digitall videos to be recorded.
Image-Pro Plus 7.0 Media Cybernetics 41N70000-61592 For data analysis. Manually tag cells displaying the different behaviors. Track cells for analysis of rolling and migration velocities.
Refer to product datasheets for details on hazards of using the reagents described here.

Referências

  1. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Ann. Rev. Physiol. 57, 827-872 (1995).
  2. Ley, K., Laudanna, C., Cybulsky, M. I., Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature reviews. Immunology. 7 (9), 678-689 (2007).
  3. McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E., Nash, G. B. Tissue stroma as a regulator of leukocyte recruitment in inflammation. Journal of leukocyte biology. 91 (3), 385-400 (2012).
  4. Serhan, C. N., Savill, J. Resolution of inflammation: the beginning programs the end. Nature immunology. 6 (12), 1191-1197 (2005).
  5. Schmidt, S., Moser, M., Sperandio, M. The molecular basis of leukocyte recruitment and its deficiencies. Molecular immunology. 55, 49-58 (2013).
  6. Luu, N. T., Rainger, G. E., Nash, G. B. Differential Ability of Exogenous Chemotactic Agents to Disrupt Transendothelial Migration of Flowing Neutrophils. The Journal of Immunology. 164 (11), 5961-5969 (2000).
  7. Smith, C. W., Rothlein, R., et al. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. The Journal of clinical investigation. 82 (5), 1745-1756 (1988).
  8. Luscinskas, F. W., Brock, A. F., Arnaout, M. A., Gimbrone, M. A. Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium. J. Immunol. 142 (7), (1989).
  9. Bahra, P., Rainger, G. E., Wautier, J. L., Nguyet-Thin, L., Nash, G. B. Each step during transendothelial migration of flowing neutrophils is regulated by the stimulatory concentration of tumour necrosis factor-alpha. Cell adhesion and communication. 6 (6), 491-501 (1998).
  10. Piali, L., Weber, C., et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. European journal of immunology. 28 (3), 961-972 (1998).
  11. McGettrick, H. M., Smith, E., et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. European journal of immunology. 39 (1), 113-125 (2009).
  12. McGettrick, H. M., Hunter, K., Moss, P. a., Buckley, C. D., Rainger, G. E., Nash, G. B. Direct observations of the kinetics of migrating T cells suggest active retention by endothelial cells with continual bidirectional migration. Journal of leukocyte biology. 85 (1), 98-107 (2009).
  13. McGettrick, H. M., Buckley, C. D., Filer, A., Rainger, G. E., Nash, G. B. Stromal cells differentially regulate neutrophil and lymphocyte recruitment through the endothelium. Immunology. 131 (3), 357-370 (2010).
  14. Tull, S. P., Yates, C. M., et al. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS biology. 7 (8), e1000177 (2009).
  15. Ahmed, S. R., McGettrick, H. M. Prostaglandin D2 regulates CD4+ memory T cell trafficking across blood vascular endothelium and primes these cells for clearance across lymphatic endothelium. Journal of immunology. 187 (3), 1432-1439 (2011).
  16. Bradfield, P. F., Amft, N., et al. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis and rheumatism. 48 (9), 2472-2482 (2003).
  17. Filer, A., Parsonage, G., et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis and rheumatism. 54 (7), 2096-2108 (2006).
  18. Lally, F., Smith, E., et al. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis and rheumatism. 52 (11), 3460-3490 (2005).
  19. Chakravorty, S. J., McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E., Nash, G. B. An in vitro. model for analysing neutrophil migration into and away from the sub-endothelial space: Roles of flow and CD31. Biorheology. 43 (1), 71-82 (2006).
  20. Rainger, G. E., Nash, G. B. Cellular Pathology of Atherosclerosis Smooth Muscle Cells Prime Cocultured Endothelial Cells for Enhanced Leukocyte Adhesion. Circulation Research. 88 (6), 615-622 (2001).
  21. Kuravi, S. J., McGettrick, H. M. Podocytes regulate neutrophil recruitment by glomerular endothelial cells via IL-6-mediated crosstalk. Journal of immunology. 193 (1), 234-243 (2004).
  22. Parsonage, G., Filer, A. D. A stromal address code defined by fibroblasts. Trends in immunology. 26 (3), 150-156 (2005).
  23. Luu, N. T., McGettrick, H. M. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine-induced leukocyte recruitment. Stem cells. 31 (12), 2690-2702 (2013).
  24. Bevilacqua, M. P., Nelson, R. M., Mannori, G., Cecconi, O. Endothelial-leukocyte adhesion molecules in human disease. Annual review of medicine. 45, 361-378 (1994).
  25. Stanness, K. A., Beatty, P. G., Ochs, H. D., Harlan, J. M. An endothelial cell surface factor(s) induced in vitro. 136 (12), 4548-4553 (1986).
  26. Burton, V. J., Butler, L. M. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Experimental cell research. 317 (3), 276-292 (2011).
  27. Luu, N. T., Rainger, G. E., Buckley, C. D., Nash, G. B. CD31 Regulates Direction and Rate of Neutrophil Migration over and under Endothelial Cells. Journal of Vascular Research. 40 (5), 467-479 (2003).
  28. McGettrick, H. M., Buckley, C. D., Ed Rainger, G., Nash, G. B. Influence of stromal cells on lymphocyte adhesion and migration on endothelial cells. Methods in molecular biology. 616, 49-68 (2010).
  29. Butler, L. M., McGettrick, H. M., Nash, G. B. Static and dynamic assays of cell adhesion relevant to the vasculature. Methods in molecular biology. 467, 211-228 (2009).
  30. Jeffery, H. C., Buckley, C. D., Moss, P., Rainger, G. E., Nash, G. B., McGettrick, H. M. Analysis of the effects of stromal cells on the migration of lymphocytes into and through inflamed tissue using 3-D culture models. Journal of immunological methods. 400-401, 45-57 (2013).
check_url/pt/52480?article_type=t

Play Video

Citar este artigo
Munir, H., Rainger, G. E., Nash, G. B., McGettrick, H. Analyzing the Effects of Stromal Cells on the Recruitment of Leukocytes from Flow. J. Vis. Exp. (95), e52480, doi:10.3791/52480 (2015).

View Video