Summary

천장 문화 성숙한 지방 세포의 탈분화를 통해 인간 된 지방 줄기 세포의 생성

Published: March 07, 2015
doi:

Summary

Mature adipocytes may represent an abundant source of stem cells through dedifferentiation, which leads to a homogenous population of fibroblast-like cells. Collagenase digestion is used to isolate mature adipocytes from human fat. The goal of our protocol is to obtain multipotent, dedifferentiated fat cells from human mature adipocytes.

Abstract

Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering.

Introduction

In vitro dedifferentiation of mature adipocytes is achieved through a technique called ceiling culture1. Because of their natural tendency to float in aqueous solutions, isolated mature adipocytes adhere to the surface of an inverted flask fully filled with culture medium. Over a few days, cells modify their spherical morphology and become fibroblast-like cells. The resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent2. Research articles on adipocyte dedifferentiation, especially on human cells, are limited. However, they have already provided interesting information regarding multipotency, cell phenotype and replicative capacity of DFAT cells2. Mature adipocytes originating from various fat compartments have been successfully dedifferentiated including those originating from human visceral and subcutaneous adipose tissues2-4. In addition to these depots, Kishimoto and collaborators sampled adipose tissue from the buccal fat pads and dedifferentiated adipocytes into DFAT cells5. Matsumoto and collaborators successfully generated subcutaneous DFAT cells from patients covering a wide range of ages, and the majority of cells had a high proliferative rate and less than 6% of senescence even after 10 passages in culture2.

DFAT cells have been successfully re-differentiated into several lineages, including adipogenic, osteogenic, chondrogenic and neurogenic lineages2,3,6. These cells express several embryonic stem cell markers such as Nanog and the four identified pluripotent factors Oct4, c-myc, Klf4 and Sox23. They also express markers specific to each of the three germ layers7. In addition, DFAT cells are similar to Bone Marrow-derived Mesenchymal Stem Cells (BM-derived MSC) based on their epigenetic signature3. Exploiting the stem cell capacity of DFAT cells, many groups have investigated their potential to treat or improve various diseases8,9. Improvements of pathologic conditions, such as infracted cardiac tissue, spinal cord injury and urethral sphincter dysfunction, have been observed with DFAT cell injections in rat models of disease10-12.

In addition to the stem cell properties of DFAT cells, they may represent a new cellular model for adipocyte physiology studies. The 3T3-L1 cell line is often used for this purpose as these cells differentiate into adherent, lipid-storing adipocytes under adipogenic stimulation13. However, these cells originate from mouse embryo tissue13. Also, depot-specificity cannot be investigated with this model and it may not fully reflect human adipocyte physiology14. Other laboratories work with isolated adipose cells from murine fat depots, but fat distribution is not dimorphic in mice and anatomical configuration of the rodent’s abdominal cavity prevents from extrapolating directly to humans15. In order to study adipocytes in the context of the physiopathology of human obesity, consideration of body fat distribution and fat depot-specific differences has become essential16. Some limitations of primary preadipocyte cultures, including cell quantities obtained from adipose tissue biopsy samples and their senescence after a few passages in culture, created the need for alternate models. Perrini and collaborators investigated depot-specificity in gene expression of DFAT cells originating from visceral and subcutaneous fat and compared them to adipose-derived stem cells (ASC) from the same fat depot. They demonstrated that differences in gene expression and function where mainly found between depots than between cell types, suggesting that DFAT cells are physiologically close to ASC from the same depot. DFAT cells may represent an interesting alternative to available models for studies on fat distribution in the pathophysiology of human obesity. Moreover, ceiling culture is a promising method to obtain adult stem cells for tissue engineering purposes.

Here, we describe collagenase digestion, a widely-used technique to isolate mature adipocytes from the subcutaneous and/or visceral fat samples17, and the subsequent steps to perform ceiling culture and dedifferentiate these cells into multipotent, fibroblast-like cells.

Protocol

윤리 문 :이 프로젝트는 이전에 환자 모집에 IUCPQ의 연구 윤리위원회에 의해 승인되었습니다. 이 문서 / 비디오의 목적을 위해, 우리는이 환자의 조직을 얻을 : 1) 57kg의 체질량 지수 50.7 kg / m 2, 2) 35 세 여자 환자의 BMI와 62 세 남자 환자 / 2, m. 실험은 모두 지방 구획하여 수행 할 수 있지만,이 동영상의 목적을 위해 하나의 지방 구획에 한정되어왔다. 비디오의 기술적 인 측면은 환자 …

Representative Results

주요 형태 학적 변화는 탈분화 (그림 1) 동안 지방 세포를 성숙 발생합니다. 도 2에 도시 된 바와 같이, 탈분화을받은 세포는 형광 분석을위한 안티 FABP4 항체로 염색 하였다. 섬유 아세포 유사 세포의 대부분은하지 않았다 반면 라운드 형태로 세포 FABP4 단백질 발현. 탈분화 후 DFAT 세포는 여러 통로위한 표준 절차를 재배 할 수있다. 우리는 인간 피하 장간막 DFAT 세포주 대 ?…

Discussion

천장 배양법 성숙한 지방 세포의 탈분화 네이티브 지방 조직의 작은 샘플로부터 지방 줄기 세포를 얻기 위해 새로운 방식이다. 경험 등 (2)의 기준, 1g 조직은 25 cm-2 플라스크 판형하고 균질 Poloni 협력자 (3)에 의해 입증되었다 DFAT있는 세포 집단을 수득하기에 충분하다. 지방 세포의 탈분화는 독립적으로 연령, 성별 및 기타 특성, 어떤 기증자 세포 가능한 것 같다. DFAT는 얻?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This study was supported by Natural Sciences and Engineering Research Council of Canada Discovery Grant (371697-2011, AT). The authors want to acknowledge the help of bariatric surgeons Drs S. Biron, F-S. Hould, S. Lebel, O. Lescelleur, P. Marceau as well as Christine Racine and Caroline Gagnon from the IUCPQ Tissue Bank. We thank Mr Jacques Cadorette from the IUCPQ’s audiovisual services for video shooting and editing.

Materials

Bovine serum albumine Sigma A7906
Adenosine Sigma A4036
Ascorbic acid Sigma A0278
NaCl Any brand can be used
KCl Any brand can be used
CaCl2 Any brand can be used
MgCl2 Any brand can be used
KH2PO4 Any brand can be used
HEPES Any brand can be used
Glucose Any brand can be used
Type I collagenase Worthington Biochemical Corp LS-004196
DMEM/F-12, HEPES, no phenol red Gibco-Life Technologies 11039-021 Add to medium : 20% calf serum, gentamicin (50µg/ml) and fungizone (2.5µg/ml)
Calf Serum, iron supplemented, from formula-fed calves Sigma C8056-500ml
1/2 In plastic bushing Iberville 2704-CP SKU:1000120918 (Home Depot)
Liquid nitrogen Linde
Formalin soluton, neutral buffered, 10% SIGMA HT501128
Sterile tweezers
Sterile scissors
60cc syringes BD Syringe
Plastic tubing
Krebs-Ringer-Henseleit stock buffer (KRH) Prepare stock buffer as following: 25mM HEPES pH7.6, 125mM NaCl, 3.73mM KCl, 5mM CaCl2.2H2O, 2.5mM MgCl2.6H2O, 1mM K2HPO4. Adjust pH to 7.4.
Krebs-Ringer-Henseleit-Working Buffer (KRH-WB) Add the following components freshly to KRH buffer: 4% bovine serum albumin, 5mM glucose, 0.1µM adenosine, 560 µM ascorbic acid
KRH-WB supplemented with Type I collagenase Add 350U/ml of Type I collagenase
T25 unvented cap tissue culture flask Sarsted or other brand
6-well tissue culture plate BD Falcon or other brand
Microscope cover glass 22×22 Fisherbrand 12-542-B
Sterile beakers

Referências

  1. Zhang, H. H., Kumar, S., Barnett, A. H., Eggo, M. C. Ceiling culture of mature human adipocytes: use in studies of adipocyte functions. J Endocrinol. 164 (2), 119-128 (2000).
  2. Matsumoto, T., et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 215 (1), 210-222 (2008).
  3. Poloni, A., et al. Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells. Stem Cells. 30 (5), 965-974 (2012).
  4. Perrini, S., et al. Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS One. 8 (3), e57892 (2013).
  5. Kishimoto, N., et al. The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Investig. , (2013).
  6. Kou, L., et al. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem Biophys Res Commun. 444 (4), 543-548 (2014).
  7. Jumabay, M., et al. Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med. 3 (2), 161-171 (2014).
  8. Sugawara, A., Sato, S. Application of dedifferentiated fat cells for periodontal tissue regeneration. Hum Cell. 27 (1), 12-21 (2014).
  9. Kikuta, S., et al. Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis. Tissue Eng Part A. 19 (15-16), 1792-1802 (2013).
  10. Obinata, D., et al. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol. 18 (12), 827-834 (2011).
  11. Jumabay, M., et al. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol. 47 (5), 565-575 (2009).
  12. Ohta, Y., et al. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 17 (8), 877-886 (2008).
  13. Moreno-Navarrete, J. M. F. -. r., Symonds, M. E. Ch. 2. Adipose Tissue Biology. , 17-38 (2012).
  14. Poulos, S. P., Dodson, M. V., Hausman, G. J. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood. 235 (10), 1185-1193 (2010).
  15. Casteilla, L., Penicaud, L., Cousin, B., Calise, D. Choosing an adipose tissue depot for sampling: factors in selection and depot specificity). Methods Mol Biol. 456, 23-38 (2008).
  16. Tchernof, A., Despres, J. P. Pathophysiology of human visceral obesity: an update. Physiol Rev. 93 (1), 359-404 (2013).
  17. Rodbell, M. Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis. J Biol Chem. 239, 375-380 (1964).
  18. Watson, J. E., et al. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor. Adv Wound Care. 3 (3), 219-228 (2014).
check_url/pt/52485?article_type=t

Play Video

Citar este artigo
Lessard, J., Côté, J. A., Lapointe, M., Pelletier, M., Nadeau, M., Marceau, S., Biertho, L., Tchernof, A. Generation of Human Adipose Stem Cells through Dedifferentiation of Mature Adipocytes in Ceiling Cultures. J. Vis. Exp. (97), e52485, doi:10.3791/52485 (2015).

View Video