Summary

Вывод из высокоочищенных кардиомиоцитов из человеческих индуцированных плюрипотентных стволовых клеток с использованием малой молекулы-модулированный Дифференциация и последующих глюкозы Голод

Published: March 18, 2015
doi:

Summary

Here, we describe a robust protocol for human cardiomyocyte derivation that combines small molecule-modulated cardiac differentiation and glucose deprivation-mediated cardiomyocyte purification, enabling production of purified cardiomyocytes for the purposes of cardiovascular disease modeling and drug screening.

Abstract

Клеток получают кардиомиоциты плюрипотентные стволовые вызванных деятельностью человека (hiPSC-CMS) стали важным источником клеток для решения проблемы нехватки первичных кардиомиоцитов, доступных для фундаментальных исследований и трансляционных приложений. Чтобы дифференцировать hiPSCs в кардиомиоциты, различные протоколы, включая эмбриоидном тела (EB) основе дифференциации и индукции фактора роста были разработаны. Тем не менее, эти протоколы неэффективны и сильно варьирует в их способности генерировать очищенные кардиомиоциты. В последнее время, малая молекула на основе протокола использованием модуляции сигналов Wnt / β-катенин было показано, чтобы способствовать сердечной дифференциации с высокой эффективностью. С помощью этого протокола, более чем на 50% -60% дифференцированных клеток были сердечный тропонин-положительных кардиомиоциты последовательно наблюдалось. Для дальнейшего повышения чистоты кардиомиоцитов, дифференцированные клетки подвергали голоданию в глюкозу, чтобы специально исключить некардиомиоциты на основе метаболического разностис между кардиомиоцитов и некардиомиоциты. Используя эту стратегию выбора, мы последовательно получили увеличение более чем на 30% в соотношении кардиомиоцитов в некардиомиоциты в популяции дифференцированных клеток. Эти особо чистые кардиомиоциты должны повысить надежность результатов человеческой IPSC основе в пробирке исследования моделирования заболеваний и скрининга лекарственных средств анализов.

Introduction

Primary human cardiomyocytes are difficult to obtain because of the requirement for invasive cardiac biopsies, difficulty in dissociating to single cells, and because of poor long-term cell survival in culture. Given this lack of primary human cardiomyocytes, patient-specific human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology has been regarded as a powerful alternative cardiomyocyte source for basic research as well as clinical and translational applications such as disease modeling and drug discovery1. Early efforts in differentiating pluripotent stem cells into cardiomyocytes employed differentiation protocols using embryoid bodies (EBs), but this method is inefficient in producing cardiomyocytes because often less than 25% of cells in an EB are beating cardiomyocytes2,3. Comparatively, a monolayer-based differentiation protocol using the cytokines activin A and BMP4 displayed a higher efficiency than EBs, but this protocol is still relatively inefficient, requires expensive growth factors, and only functions in a limited number of human pluripotent stem cell lines4. Recently, a highly efficient, hiPSC monolayer-based cardiomyocyte differentiation protocol was developed by modulating Wnt/β-Catenin signaling5. These hiPSC-CMs express cardiac troponin T and alpha actinin, two sarcomeric proteins that are standard markers of cardiomyocytes6. The protocol describe here is an adaptation of this small molecule-based, feeder cell-free, monolayer differentiation method5,7. We are able to obtain beating cardiomyocytes from hiPSCs after 7-10 days (Figure 1). However, following a cardiomyocyte differentiation resulting in 50% beating cells, immunostaining consistently shows the existence of a population of non-cardiomyocytes that are negative for cardiomyocyte-specific markers such as cardiac-specific troponin T and alpha-actinin. To further purify cardiomyocytes and eliminate non-cardiomyocytes, heterogeneous differentiated cell populations were subjected to glucose starvation by treating them with an extremely low glucose culture medium for multiple days (Figure 2). This treatment selectively eliminates non-cardiomyocytes due to the ability of cardiomyocytes, but not non-cardiomyocytes, to metabolize lactate as the primary energy source in order to survive in a low glucose environment8. After this purification step, a 40% increase in the ratio of cardiomyocytes to non-cardiomyocytes is observed, (Figure 3, Figure 4) and these cells can be used for downstream gene expression analysis, disease modeling, and drug screening assays.

Protocol

NOTE: Vendor information for all reagents used in this protocol has been listed in Table 1 and Materials List. All solutions and equipment coming into contact with cells must be sterile, and aseptic technique should be used accordingly. Perform all culture incubations in a humidified 37 °C, 5% CO2 incubator unless otherwise specified. In this protocol, all differentiations are performed in 6-well plates, in which the hiPSCs are seeded. Following differentiation and purifi…

Representative Results

The morphological changes during hiPSC differentiation. The hiPSC cultured in feeder-free plates grew as flat, two-dimensional colonies. Upon reaching around 85% confluency, hiPSCs were treated with 6 µM CHIR for differentiation (Figure 1A). Substantial amounts of cell death, a normal and common phenomenon, were observed after 24 hr of CHIR treatment. After two days of CHIR treatment, the hiPSCs continued to differentiate towards a mesodermal fate. In com…

Discussion

Obtaining a large amount of highly purified hiPSC-derived cardiomyocytes is critical for basic cardiac research as well as clinical and translational applications. Cardiac differentiation protocols have undergone tremendous improvements in recent years, transitioning from embryoid body-based methods utilizing cardiogenic growth factors2, to matrix sandwich methods12, and finally to small molecule-modulated and monolayer-based methods5. Of the aforementioned protocols, the protocol describ…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by the NIH/NHBI (U01 HL099776-5), the NIH Director’s New Innovator Award (DP2 OD004411-2), the California Institute of Regenerative Medicine (RB3-05129), the American Heart Association (14GRNT18630016) and the Endowed Faculty Scholar Award from the Lucile Packard Foundation for Children and the Child Health Research Institute at Stanford (to SMW). We also acknowledge funding support from the American Heart Association Predoctoral Fellowship 13PRE15770000, and National Science Foundation Graduate Research Fellowship Program DGE-114747 (AS).

Materials

Name Company Catalog number
Matrigel (9-12 mg/mL) BD Biosciences 354277
RPMI media Invitrogen 11835055
Glucose free RPMI media Invitrogen 11879-020
B27 Minus Insulin Invitrogen A1895601
B27 Supplement (w/ insulin) Invitrogen 17504-044
Pen-strep antibiotic Invitrogen 15140122
Fetal bovine serum BenchMark 100-106
DMSO Sigma D-2650
ROCK inhibitor Y-27632 EMD Millipore 688000
CHIR99021 Thermo Fisher 508306
IWR1 Sigma I0161
EDTA Invitrogen 15575-020
Accutase Millipore SCR005
Cell lifter Fisher 08-100-240
Cryovial Fisher (NUNC tubes) 375418
TrypLE Select Enzyme Invitrogen 12563-011

Referências

  1. Sharma, A., Wu, J. C., Wu, S. M. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Research & Therapy. 4 (6), 150 (2013).
  2. Kehat, I., et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation. 108 (3), 407-414 (2001).
  3. Zhang, J., et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research. 104 (4), e30-e41 (2009).
  4. Kattman, S. J., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  5. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), E1848-E1857 (2012).
  6. Sharma, A., et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circulation Research. 115 (6), 556-566 (2014).
  7. Lian, X., et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nature Protocols. 8 (1), 162-175 (2013).
  8. Tohyama, S., et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 12 (12), 127-137 (2013).
  9. Rodin, S., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology. 28 (6), 611-615 (2010).
  10. Li, X., Meng, G., Krawetz, R., Liu, S., Rancourt, D. E. The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells And Development. 17 (6), 1079-1085 (2008).
  11. Burridge, P. W., et al. Chemically defined generation of human cardiomyocytes. Nature Methods. 11 (8), 855-860 (2014).
  12. Zhang, J., et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation Research. 111 (9), 1125-1136 (2012).
  13. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).

Play Video

Citar este artigo
Sharma, A., Li, G., Rajarajan, K., Hamaguchi, R., Burridge, P. W., Wu, S. M. Derivation of Highly Purified Cardiomyocytes from Human Induced Pluripotent Stem Cells Using Small Molecule-modulated Differentiation and Subsequent Glucose Starvation. J. Vis. Exp. (97), e52628, doi:10.3791/52628 (2015).

View Video