Summary

锝-99m在马腱末端标记的骨髓间充质干细胞的体内成像和跟踪

Published: December 09, 2015
doi:

Summary

This protocol describes the radiolabeling of equine mesenchymal stem cells and their implantation into tendon injuries in the horse in order to determine cell survival and tissue distribution using gamma scintigraphy.

Abstract

骨髓间充质干细胞(BMMSC)的肌腱和韧带受伤的马的治疗应用的最新进展表明,在实验和临床研究改善结果的措施。虽然BMMSC注入到肌腱病变大量(通常为10 – 20个百万细胞),只有相当少数存活(<10%),尽管这些能持续植入后长达5个月。这似乎是在其他物种的共同观测其中BMMSC已注入到其它组织和重要的是要理解,当这个损失发生时,有多少生存最初植入过程和细胞是否被清除到其他器官。跟踪细胞的命运可以通过放射性标记的BMMSC在植入前,允许非侵入性细胞的位置和细胞数的定量体内成像来实现。

本协议描述的小区labeliNG过程使用锝-99m(TC – 99m的),而这些细胞植入后追踪到马受伤的肌腱。锝- 99m的是一个短暂的(吨1/2 6.01的小时)同位素发射的γ射线,并且可以通过细胞的亲脂性化合物hexamethylpropyleneamine肟(HMPAO)的存在下内化。这些特性使其非常适合在核医学诊所使用了很多不同的疾病的诊断。标记的细胞的命运可以遵循在短期内(长达36小时)通过γ闪烁来量化细胞保留在病灶和细胞分布到肺,甲状腺和其它器官的两个数。该技术适于从血液中的白细胞的标签和可用于图像中的其它器官植入BMMSC。

Introduction

对于患病或受损组织的修复再生策略基于来自于多种组织和注入到患部的多能干细胞。自体BMMSC的肌腱和韧带受伤的马治疗应用的最新进展表明在这两个实验1-5改善成果的措施和临床研究6。马是一个特别有吸引力的模型来评估干细胞的相关治疗的功效,因为它遭受年龄和过度紧张有关的伤害到远侧前肢的筋,它是一个运动动物,而且它是一个大的,促进骨髓恢复和准确植入。肌腱损伤自然愈合与纤维化,但愈合肌腱功能逊色7并且有再度受伤8的高风险。浅数字屈肌腱(SDFT)最常受到影响,因为它已演变作为弹性能存储和经验的高负荷强调,实现节能和高速运动。伤后恢复功能,因此,至关重要。这些损伤是类似于那些影响跟腱在人中它执行类似的功能9。有没有好的治疗方案治疗或达到良好的修为这种伤害,因此基于细胞的再生战略提供了一个有吸引力的机会,改善预后,减少再损伤。

在大多数研究中5年 – 2000万元自体BMMSC直接注入这通常发生在腱体,其因此用作容器的细胞的芯内的病变。一旦注入细胞的命运不明确和不同的细胞标记方法来跟踪单元已经被最近描述。细胞标记有荧光标记示生存只在相对 ​​较小的数量(<10%)10,11。荧光标记必要组织提取和切片用于组织学分析这是耗时和不容易促进在大型动物模型或在临床病例时间分析。在最近的工作中,我们使用了放射性同位素99m锝标记细胞,并按照他们的命运由γ闪烁1。此方法允许细胞递送的不同途径,包括病灶内,经颈静脉或1区域性灌注静脉内经由动脉12或静脉内注射1,12之间进行快速比较。细胞的持久性和分布然后通过各个器官的γ闪烁成像。这已经证明,只有24%的细胞注射的病灶内留在病变24小时1,这是支持通过使用实验产生的损伤,并使用相同的放射性标记5的另一项研究。此外,细胞表现出的能力,家里有限的肌腱病变时delivere改发局部灌注或静脉内而是被分散进入肺部受到后者的路线4。

BMMSC标记铁纳米颗粒是一种替代的方法来跟踪细胞植入到前肢筋13。虽然铁纳米颗粒标记的细胞允许在体内通过MRI细胞跟踪,在大型动物颞研究是由麻醉可以在用于执行磁共振成像扫描每个时间点进行给药的次数的限制。此外,铁纳米颗粒是低信号的MRI这限制了对标记细胞的迁移进入腱体中的信息。可以使用的其它放射性同位素包括铟-111但这遭受更长的半衰期比锝 – 99m的的缺点(2.8天比6.0小时)和较高的γ射线发射能量。此外,细胞存活率已报道可以减少当与铟-111 14标记。锝 – 99m的,另一方面,是经常在两个马和人核用药品标签外周血单个核细胞,并按照在体内的分布显像。它可以相对容易地采取由使用HMPAO作为连接分子结合的锝细胞,在Tc-99米-HMPAO,至细胞。锝- 99m的-HMPAO标记BMMSC显示出良好的可行性和在体外增殖4。这个协议的细节注入自然发生病变的前肢SDFT标签和马自体BMMSC的跟踪。

要注意,该协议仅用于被用作研究工具是重要的。其作为临床治疗方法不推荐使用作为上的细胞表型的放射性标记还没有得到完全阐明的效果。

Protocol

下面授予的存留Veterinarios马拉加,西班牙的动物伦理和福利委员会,以及皇家兽医学院,北Mymms,英国的马匹使用的程序伦理许可本文所描述的情况下,进行基于批准的方案是在临床上使用接收的干细胞为基础的治疗,其包括镇静,骨髓抽吸内,腱注射,局部灌注,静脉注射,后处理程序和疼痛管理和监测植入后马。 1.重点安排,事先提出寻求制度伦理和动物福利的?…

Representative Results

锝- 99m的-HMPAO掺入BMMSs并不其粘附到组织培养塑料能力产生不利影响,而它们显示出扩散以形成单层的能力(图1),我们还没有完全确定的增殖率或其他细胞表型是否会受到影响。其形态类似于未标记细胞具有典型的纺锤形。蜂窝标记效率(即,摄取标签)通常变化约1.5%至25%。的主要原因的低标记率与在交付99m锝的诊所从其中的Mo-99 /锝- 99m的发电机已洗脱站点的延?…

Discussion

除了骨髓,干细胞等来源的脂肪组织中分离适合与此协议标签。此外,从冷冻状态的细胞可以恢复并在培养中扩增到所需的号码标记研究12。

用于确定标记所述BMMSC的效率的一个关键因素是锝 – 99m的从钼发生器的洗脱之间的时间在放射性药物,制备锝 – 99m的-HMPAO和使用在临床的放射性药物。有从发电机,使得超出此期间延迟可显著损害细胞标记的效率锝 – 99m的洗脱?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from the Horserace Betting Levy Board U.K. (grant number 721) and VetCell BioScience Ltd, U.K. and by Consejerìa de Innovaciòn, Ciencia y Empresa, Junta de Andalucìa, Spain.

Materials

Technetium99m  Please enquire with local ionisation radiation supplier in accordance with legal requirements.  The isotope must be used within 2 h of elution from the molybdenum-99 generator
Ceretec – Hexamethylpropyleneamine oxime (HMPAO)  GE HealthCare Please enquire directly with GE HealthCare
Microfuge, Minispin/Minispin Plus Ependorf 22620100
18G and 19G Needles Terumo Medical NN-1838R (18G);         NN1938R (19G)
Syringes 1 mL and 2 mL Scientific Laboratory Supplies Ltd SYR6200 (1 mL); SYR6003 (2 mL)
Microcentrifuge tubes 1.5 mL Greiner Bio-One Ltd 616201
PBS – Phosphate-Buffered Saline LifeTechnologies 14190
Sterile Gauze Swabs Shermond Ltd UNG602
CoflexVet self adhering bandage Andover Healthcare, Inc. 3540RB-018
Ultrasound imaging software Scion Image, Scion Corporation, USA
MicasXplus Scintigram processing software Bartec Technologies Ltd http://www.bartectechnologies.com/veterinaryscintigraphy.html
Field isotope counter for monitoring isotope John Caunt U.K. GMS1800a http://www.johncaunt.com/
Well counter for isotope measurements, dose calibrator Capintec Southern Scientific CRC-25R

Referências

  1. Becerra, P., et al. Distribution of injected technetium(99m)-labeled mesenchymal stem cells in horses with naturally occurring tendinopathy. Journal of Orthopaedic Research. 31, 1096-1102 (2013).
  2. Nixon, A. J., Dahlgren, L. A., Haupt, J. L., Yeager, A. E., Ward, D. L. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. American Journal of Veterinary Research. 69, 928-937 (2008).
  3. Schnabel, L. V., et al. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. Journal of Orthopaedic Research. 27, 1392-1398 (2009).
  4. Smith, R. K., et al. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PloS one. 8, e75697 (2013).
  5. Sole, A., et al. Distribution and persistence of technetium-99 hexamethyl propylene amine oxime-labelled bone marrow-derived mesenchymal stem cells in experimentally induced tendon lesions after intratendinous injection and regional perfusion of the equine distal limb. Equine Veterinary Journal. 45, 726-731 (2013).
  6. Godwin, E. E., Young, N. J., Dudhia, J., Beamish, I. C., Smith, R. K. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Veterinary Journal. 44, 25-32 (2012).
  7. Crevier-Denoix, N., et al. Mechanical properties of pathological equine superficial digital flexor tendons. Equine Veterinary Journal. 29, 23-26 (1997).
  8. O’Meara, B., Bladon, B., Parkin, T. D., Fraser, B., Lischer, C. J. An investigation of the relationship between race performance and superficial digital flexor tendonitis in the Thoroughbred racehorse. Equine Veterinary Journal. 42, 322-326 (2010).
  9. Alexander, R. M. Energy-saving mechanisms in walking and running. The Journal of Experimental Biology. 160, 55-69 (1991).
  10. Guest, D. J., Smith, M. R., Allen, W. R. Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: preliminary study. Equine Veterinary Journal. 40, 178-181 (2008).
  11. Guest, D. J., Smith, M. R., Allen, W. R. Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Veterinary Journal. 42, 636-642 (2010).
  12. Sole, A., et al. Scintigraphic evaluation of intra-arterial and intravenous regional limb perfusion of allogeneic bone marrow-derived mesenchymal stem cells in the normal equine distal limb using (99m) Tc-HMPAO. Equine Veterinary Journal. 44, 594-599 (2012).
  13. Carvalho, A. M., et al. Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Veterinary Journal. 46, 635-638 (2014).
  14. Welling, M. M., Duijvestein, M., Signore, A., van der Weerd, L. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. Journal of Cellular Physiology. 226, 1444-1452 (2011).
  15. Dowling, B. A., Dart, A. J., Hodgson, D. R., Smith, R. K. Superficial digital flexor tendonitis in the horse. Equine Veterinary Journal. 32, 369-378 (2000).
  16. Kasashima, Y., Ueno, T., Tomita, A., Goodship, A. E., Smith, R. K. Optimisation of bone marrow aspiration from the equine sternum for the safe recovery of mesenchymal stem cells. Equine Veterinary Journal. 43, 288-294 (2011).
  17. Avella, C. S., et al. Ultrasonographic assessment of the superficial digital flexor tendons of National Hunt racehorses in training over two racing seasons. Equine Veterinary Journal. 41, 449-454 (2009).
  18. de Vries, E. F., Roca, M., Jamar, F., Israel, O., Signore, A. Guidelines for the labelling of leucocytes with (99m)Tc-HMPAO. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. European Journal of Nuclear Medicine and Molecular Imaging. 37, 842-848 (2010).
  19. Trela, J. M., et al. Scintigraphic comparison of intra-arterial injection and distal intravenous regional limb perfusion for administration of mesenchymal stem cells to the equine foot. Equine Veterinary Journal. 46, 479-483 (2014).
  20. Barbash, I. M., et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 108, 863-868 (2003).
  21. Heckl, S. Future contrast agents for molecular imaging in stroke. Current Medicinal Chemistry. 14, 1713-1728 (2007).
check_url/pt/52748?article_type=t

Play Video

Citar este artigo
Dudhia, J., Becerra, P., Valdés, M. A., Neves, F., Hartman, N. G., Smith, R. K. In Vivo Imaging and Tracking of Technetium-99m Labeled Bone Marrow Mesenchymal Stem Cells in Equine Tendinopathy. J. Vis. Exp. (106), e52748, doi:10.3791/52748 (2015).

View Video