Summary

Détection de α-synucléine maladie associée par ELISA renforcée dans le cerveau de souris transgéniques surexprimant A53T humaine mutée α-synucléine

Published: May 30, 2015
doi:

Summary

An ELISA offering a novel quantitative approach is described. It specifically detects disease-associated α-synuclein (αSD) in a transgenic mouse model (M83) of synucleinopathy using several antibodies against either the Ser129 phosphorylated αS form or the C-terminal part of the protein.

Abstract

En plus des méthodes établies comme Western blot, de nouvelles méthodes sont nécessaires pour quantifier rapidement et facilement associé à une maladie α-synucléine (aS D) dans des modèles expérimentaux de synucléopathies. Une lignée de souris transgéniques (M83) sur-exprimant les aS de A53T humaines et développer spontanément un phénotype clinique dramatique entre huit et 22 mois d'âge, caractérisées par des symptômes tels que la perte de poids, une prostration, et sévère déficience motrice, a été utilisé dans cette étude. Pour les analyses moléculaires de aS D (aS associée à la maladie) chez ces souris, un test ELISA a été conçu pour quantifier spécifiquement aS D chez des souris malades. L'analyse du système nerveux central dans ce modèle de souris a montré la présence de D aS principalement dans les régions du cerveau et caudale de la moelle épinière. Il n'y avait pas de différences dans la distribution aS D entre différentes conditions expérimentales conduisant à la maladie clinique, à savoir, dans uninoculATED et le vieillissement normalement souris transgéniques et des souris inoculées avec des extraits de cerveau de souris malades. La détection spécifique de aS D immunoréactivité en utilisant un anticorps contre Ser129 phosphorylé aS par ELISA essentiellement en corrélation avec celle obtenue par transfert de Western et immunohistochimie. De façon inattendue, des résultats similaires ont été observés avec d'autres anticorps dirigés contre la partie C-terminale de aS. La propagation de aS D, suggérant l'implication d'un mécanisme de «prion-like", peut donc être facilement contrôlée et quantifiée dans ce modèle de souris en utilisant une approche ELISA.

Introduction

Most current methods for detecting disease-associated α-synuclein (αSD) in experimental models of Parkinson’s disease (PD), such as immunohistochemistry or Western blot, are time-consuming and not quantitative. This neurodegenerative disease is characterized by alpha-synuclein aggregation mainly in the form of inclusions containing an aggregated form of the normally soluble presynaptic protein αS1,2 (Lewy bodies and Lewy neurites). Normally only marginally phosphorylated, αS is hyperphosphorylated at its serine 129 residue in these inclusions3 and can be monitored by antibodies specifically directed against Ser129 phosphorylated αS, thus providing a reliable marker of the pathology.

Recent research suggests that a “prion-like” mechanism could be involved in the propagation of αS aggregation within the nervous system of an affected patient4,5. These studies reported the acceleration of a synucleinopathy by inoculating brain extracts containing αSD into a transgenic mouse model (M83) expressing an A53T mutated human αS protein associated with a severe motor impairment occurring as the mice age6. In the same manner, intra-cerebral inoculation of aggregated recombinant αS in the same M83 mouse model confirmed the acceleration of aggregation5. The induction of deposits of phosphorylated αS has also been reported after inoculation of C57Bl/6 wild-type mice with either fibrillar recombinant αS or brain extracts from human DLB patients7,8. Sacino et al.9 recently pointed out that after injection of fibrillar human αS, a widespread and progressive cerebral αS inclusion formation could be induced in M83 mice, but not in E46K transgenic mice or non-transgenic mice in which induced αS inclusions were transient, and mainly restricted to the site of injection. Recent studies on monkeys confirmed propagation of αS aggregates after inoculation of PD-derived extracts in species closer to humans10.

The link between αS alterations and Parkinson’s disease suggest that αSD is a potential biomarker for Parkinson’s disease11. A recent study showed the detection of oligomeric soluble aggregates of α-synuclein in human cerebro-spinal fluid (CSF) and plasma as a potential biomarker for Parkinson’s disease based on a conventional sandwich system ELISA using the same antibody to capture and detect αS12. Based on the same method, multimeric proteins were recognized in biological samples, including the brain, because there are multiple copies of epitopes present in the assembled forms13. Very recently, pathological αS in the CSF of patients with a proven Lewy body pathology was detected using both an ELISA kit with a highly specific antibody against αSD (5G4) and an immunoprecipitation assay14. These methods could differentiate patients with PD/DLB from other types of dementia.

The “prion-like” propagation of αS aggregation was further studied in transgenic mouse model M83 using an ELISA approach that was designed to specifically identify αSD15. In this study, we report the detailed ELISA protocol used to quantitatively detect αSD in sick mice (whether or not inoculated with αSD from sick M83 mice) and more especially in the brain regions specifically targeted by the pathological process in this M83 transgenic mouse model4.

Protocol

Toutes les procédures et protocoles impliquant des animaux ont été conformément à la directive CE 86/609 / CEE du Conseil et ratifiée par Cometh, le comité national français pour l'examen de l'éthique dans l'expérimentation animale (protocole 11-0043). Les animaux ont été logés et soignés dans l'Anses approuvé d'installations expérimentales à Lyon (approbation B 69387 0801). 1. Préparation des souris Euthanasier souris par une injection intrap…

Representative Results

Dans cette étude, les tests ELISA utilisés spécifiquement identifiés aS associées à des maladies (aS D) dans des homogénats de cerveau préparés dans un tampon de sel élevée de souris M83 malades. En utilisant un anticorps reconnaissant spécifiquement pSer129 aS (p = 0,0074), l'ELISA distingue facilement vieux, souris malades (> 8 mois) à partir de jeunes (2-5 mois), les souris M83 sains (Figure 1). Plusieurs autres anticorps ont montré des signaux aussi élevés (> 0,6…

Discussion

L'utilisation d'un test ELISA a été démontrée pour détecter spécifiquement aS D directement à partir d'homogénats de cerveau de souris au cours de la maladie dans le modèle de souris transgénique M83. En effet, cet ELISA pouvait facilement distinguer les souris malades de souris M83 M83 sains en utilisant des homogénats de cerveau ne entiers dans un tampon de sel élevée.

Les étapes les plus critiques pour de bons résultats à l'aide de cet ELISA sont…

Declarações

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier Damien Gaillard pour inoculations et le suivi de l'expérimentation animale. Ce travail a été soutenu par l'Anses (Agence française pour l'alimentation, l'environnement et la santé et sécurité au travail) et par une subvention de la Fondation France Parkinson.

Materials

LB509  Abcam  ab27766 Detection antibody 1/2000
AS11 Produced at Anses Detection antibody 1/1000
4D6  Abcam  ab1903 Detection antibody 1/2000
PSer129  Abcam   ab59264 Detection antibody 1/3000
PSer129 EP1536Y Abcam  ab51253 Detection antibody 1/1000
syn514  Abcam   ab24717 Detection antibody 1/500
clone 42 BD Biosciences  610787 Coating and detection antibody (1/2000)
8A5  Provided by Dr. Anderson Detection antibody 1/2000
polyclonal anti-αsyn antibody Millipore  AB5038P Coating  antibody
Anti-mouse  IgG HRP conjugate Southern Biotech 1010-05
 Anti-rabbit IgG HRP conjugate Southern Biotech 4010-05
Goat anti-mouse  IgG HRP conjugate Dianova 115-035-164
HS buffer Tris-HCl 50 mM  Euromedex 26-128-3094-B Adjust at pH 7.5 and keep at 4°C
NaCl 750 mM  Euromedex 1112-A
EDTA 5 mM  Euromedex EU0007-B
DTT 1 mM  Sigma 43815
PBS Na2HPO4 1 mM Euromedex 1309 Adjust at pH 7.5
KH2PO4 1,5 mM Euromedex 2018
NaCl  137 mM Euromedex 1112-A
KCl 2,7 mM Euromedex P017
Tween 20  Euromedex 2001-C
BSA  Sigma A7906
DTT 1 mM Sigma 43815 stock solution 100 mM, toxic
1% phosphatase cocktail Pierce 78428
1% protease inhibitor cocktail Roche 04 693 132 001 50 X concentrated
Microplate MaxiSorpTM Thermo Scientific  442404
Tampon carbonate 50 mM pH 9.6   Na2CO3, 10H2 Sigma 71360 2.86 g/L
 NaHCO3  Merk 6329 3.36 g/L, pH9.6
Superblock T20 PBS blocking buffer  Pierce E6423H 10 X concentrated
TMB  Sigma T0440 Used for ELISA
TMB  Analytik Jena AG 847-0104200302 Used for epitope mapping
HCl 1N  Chimie plus 40030
Ribolyser Thermo Fast prep FP120 keep on ice at this step
Grinding tubes Biorad 355-1197
Plate washer Tecan Columbus Pro
Plate reader Biorad Model 680
Low power magnifier  VWR 630-1062 X8 magnification
Forceps Dumont#7 WPI 14097 For dissection steps
Transfer pipette 1ml Samso Samso 043231
1,5 ml tubes Dutscher 033290

Referências

  1. Goedert, M., Spillantini, M. G., Del Tredici, K., Braak, H. 100 years of Lewy pathology. Nat Rev Neurol. 9, 13-24 (2013).
  2. Waxman, E. A., Giasson, B. I. Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol. 67, 402-416 (2008).
  3. Anderson, J. P., et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 281, 29739-29752 (2006).
  4. Mougenot, A. L., et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. 33, 2225-2228 (2012).
  5. Luk, K. C., et al. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 209, 975-986 (2012).
  6. Giasson, B. I., et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 34, 521-533 (2002).
  7. Luk, K. C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338, 949-953 (2012).
  8. Masuda-Suzukake, M., et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain : a journal of neurology. 136, 1128-1138 (2013).
  9. Sacino, A. N., et al. Amyloidogenic alpha-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta neuropathologica. 127, 645-665 (2014).
  10. Recasens, A., et al. Lewy body extracts from parkinson’s disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. , (2013).
  11. Foulds, P. G., et al. Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J. 25, 4127-4137 (2011).
  12. El-Agnaf, O. M., et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. Faseb J. 20, 419-425 (2006).
  13. Lee, H. J., et al. Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. J Neruosci Meth. 199, 249-257 (2011).
  14. Unterberger, U., et al. Detection of disease-associated alpha-synuclein in the cerebrospinal fluid: a feasibility study. Clin Neuropathol. 33, 329-334 (2014).
  15. Betemps, D., et al. Alpha-synuclein spreading in M83 mice brain revealed by detection of pathological alpha-synuclein by enhanced ELISA. Acta Neuropathol. (Berl). 2, 29 (2014).
  16. Osman, A. A., et al. A monoclonal antibody that recognizes a potential coeliac-toxic repetitive pentapeptide epitope in gliadins). Eur J Gastroenterol Hepatol. 13, 1189-1193 (2001).
  17. Pinheiro, J. C., Bates, D. M., Chambers, J. Ch. 5. Mixed-Effects Models in S and S-PLUS. 5, 206-225 (2000).
  18. Mougenot, A. L., et al. Production of a monoclonal antibody, against human alpha-synuclein, in a subpopulation of C57BL/6J mice, presenting a deletion of the alpha-synuclein locus. J Neruosci Meth. 192, 268-276 (2010).
  19. Specht, C. G., Schoepfer, R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2, 11 (2001).
  20. Lee, B. R., Matsuo, Y., Cashikar, A. G., Kamitani, T. Role of Ser129 phosphorylation of alpha-synuclein in melanoma cells. J Cell Sci. 126, 696-704 (2013).
  21. Perrin, R. J., et al. Epitope mapping and specificity of the anti-alpha-synuclein monoclonal antibody Syn-1 in mouse brain and cultured cell lines. Neurosci Lett. 349, 133-135 (2003).
  22. Emmanouilidou, E., et al. Assessment of alpha-synuclein secretion in mouse and human brain parenchyma. PLoS One. 6, e22225 (2011).
  23. Mougenot, A. L., et al. Transmission of prion strains in a transgenic mouse models overexpressing human A53T mutated alpha-synuclein. J Neuropathol Exp Neurol. 70, 377-385 (2011).
  24. Foulds, P. G., et al. A longitudinal study on alpha-synuclein in blood plasma as a biomarker for Parkinson’s disease. Sci Rep. 3, 2540 (2013).
check_url/pt/52752?article_type=t

Play Video

Citar este artigo
Bétemps, D., Verchère, J., Mougenot, A., Lachmann, I., Morignat, E., Antier, E., Lakhdar, L., Legastelois, S., Baron, T. Detection of Disease-associated α-synuclein by Enhanced ELISA in the Brain of Transgenic Mice Overexpressing Human A53T Mutated α-synuclein. J. Vis. Exp. (99), e52752, doi:10.3791/52752 (2015).

View Video