Summary

マウス初代肝細胞における脂肪酸酸化および脂質生成の決意

Published: August 27, 2015
doi:

Summary

デノボ脂質生成およびβ脂肪酸酸化は、肝細胞に脂肪肝疾患を含むいくつかの代謝障害に摂動された経路を主要な代謝経路を構成しています。ここでは、マウス初代肝細胞の単離を実証し、β – 脂肪酸の酸化および脂質生成の定量化について説明します。

Abstract

Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders.

In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via β-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying β-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling.

Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of β-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.

Introduction

Non-alcoholic fatty liver disease is one of the leading causes of liver disease in Westernized cultures1,2. Lipid accumulation within the liver is associated with cell death, fibrosis, and liver failure via yet unknown mechanisms3-6. In fatty liver disease, hepatocyte-mediated β-fatty acid oxidation and de novo lipogenesis are important determinants of net lipid accumulation7,8. This article will, therefore, focus on hepatocyte isolation, followed by quantification of β-fatty acid oxidation and de novo lipogenesis.

Numerous methodologies have been developed to interrogate hepatocyte lipid metabolism. Though it is possible to measure metabolism of fat in vivo using stable isotopes9,10, these methods are costly, and require large numbers of animals. Additionally, the ability to investigate the effect of exogenous chemicals is limited due to the nature of in vivo experimentation. In contrast, the isolation of primary hepatocytes from mouse liver provides an affordable avenue to pursue11. Furthermore, studying hepatocytes in culture allows investigators to study the effects of varying chemicals on lipid processing while circumventing the difficulties of in vivo experimentation. Finally, isolated hepatocytes avoid any confounding from varying genetics since they are derived from the liver of a single animal.

Here we isolate and culture of hepatocytes, and we measure β-fatty acid oxidation and de novo lipogenesis, using radiolabeled palmitate. The protocol detailed below is straight forward, effective, and reproducible.

Protocol

すべての動物実験は、ローカルおよび連邦規制に従って及び制度IACUCと放射線安全管理の承認を得て実施されるべきです。 1.準備数日前、アッセイに、肝臓ダイジェストミディアム(LDM)の500ミリリットル瓶を解凍し、50mlのコニカルチューブに〜35ミリリットルのアリコートを再凍結。必要になるまで-20℃で保存してください。 アッセイの1日前に、オート…

Representative Results

3×10 7の全細胞-肝細胞の単離は、一般的に1になります。一晩のインキュベーションの後、細胞は、六角形の表示され、その多くは( 図2)二核れます。健康な細胞は、細胞死の指標である顆粒またはブレブ、を欠いでなければなりません。 一般的には、脂肪酸酸化アッセイは、試験化合物ごとに3〜4回繰り返して実行されます。 CO 2のサンプ?…

Discussion

犠牲から灌流までの時間は、肝臓の理想的な灌流およびコラゲナーゼ消化のために3分未満でなければなりません。灌流培地で灌流が開始されると、肝臓はすぐに淡赤からに外観を変更する必要があります。 LDMとのインキュベーションの約10分後、肝臓が腫れてピンク色に表示されます。潅流が不十分である場合には、肝臓はこれらの変化を示さないことがあり、これは典型的にはより低い肝…

Declarações

The authors have nothing to disclose.

Acknowledgements

We would like to acknowledge Susan Gray and Umadevi Chalasani for their help with technical aspects of the hepatocyte isolation protocol. This work was supported by NIDDK grant 5R01DK089185 (to M.P. Cooper) and the DERC Pilot and Feasibility Program at UMMS (to M.P. Cooper).

Materials

Liver Perfusion Medium Life Technologies 17701038
Liver Digest Medium Life Technologies 17703034 Aliquot and store at -20 °C
PBS Corning 21-040-CV
10X DPBS Corning 46-013-CM
DMEM Corning 10-017-CV
FBS Life Technologies 26140079 
Collagen Life Technologies A1048301 
Colloidal silica coated with polyvinylpyrrolidone GE Life Sciences 17-0891-01
Sodium Pyruvate Cellgro 25-000-CI
Penicillin / Streptomycin Cellgro 30-001-CI
Insulin Sigma I0516-5ML
Dexamethasone Sigma D2915-100MG
Albumin (BSA), Fraction V MP Biomedicals 103703
24-Well Culture Dish Corning Falcon 353047 
Tygon S3 Tubing  Cole Parmer 06460-34
Male Leur Lock to 200 Barb Connectors Cole Parmer 45518-00
24G x 3/4" Catheter SurFlo SROX2419CA
Perma-Hand Silk Suture Ethicon 683G
Cell Strainer Corning Falcon 08-771-2
IsoTemp 3013HD Recirculating Water Bath Fisher 13-874-3
MasterFlex C/L Peristaltic Pump MasterFlex HV-77122-24
Microclamp Roboz RS-7438 Pre-sterilize in autoclave
5” Straight, Blunt-Blunt Operating Scissors Roboz RS-6810 Pre-sterilize in autoclave
24mm Blade Straight, Sharp-point Microdissecting Scissors Roboz RS-5912 Pre-sterilize in autoclave
4” 0.8mm Tip Microdissecting Forceps Roboz RS-5130 Pre-sterilize in autoclave
4” 0.8mm Tip Full Curve Microdissecting Forceps Roboz RS-5137 Pre-sterilize in autoclave
60 mL Syringe Becton Dickinson 309653
50 mL conical tubes Corning Falcon 352070
BCA Protein Assay Thermo Scientific 23225
Biosafety Cabinet
CO2 Incubator
Serological pipets
1000, 200, 20 μL pipet and tips

Referências

  1. Clark, J. M., Brancati, F. L., Diehl, A. M. The prevalence and etiology of elevated aminotransferase levels in the United States. The American journal of gastroenterology. 98, 960-967 (2003).
  2. Lazo, M., et al. Prevalence of nonalcoholic Fatty liver disease in the United States: the third national health and nutrition examination survey, 1988-1994. American journal of epidemiology. 178, 38-45 (2013).
  3. Angulo, P. Nonalcoholic fatty liver disease. The New England journal of medicine. 346, 1221-1231 (2002).
  4. Adams, L. A., et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 129, 113-121 (2005).
  5. Feldstein, A. E., et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 125, 437-443 (2003).
  6. Day, C. P., James, O. F. Steatohepatitis: a tale of two ‘hits’. Gastroenterology. 114, 842-845 (1998).
  7. Donnelly, K. L., et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of clinical investigation. 115, 1343-1351 (2005).
  8. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D., Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 146, 726-735 (2014).
  9. Parks, E. J., Hellerstein, M. K. Thematic review series: patient-oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. Journal of lipid research. 47, 1651-1660 (2006).
  10. Befroy, D. E., et al. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nature medicine. 20, 98-102 (2014).
  11. Goncalves, L. A., Vigario, A. M., Penha-Goncalves, C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malaria journal. 6, 169 (2007).
check_url/pt/52982?article_type=t

Play Video

Citar este artigo
Akie, T. E., Cooper, M. P. Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes. J. Vis. Exp. (102), e52982, doi:10.3791/52982 (2015).

View Video