Summary

-Étape spécifique de tri Spermatides souris par cytométrie en flux

Published: December 31, 2015
doi:

Summary

We describe a sorting strategy for mouse spermatids using flow cytometry. Spermatids are sorted into four highly pure populations, including round (spermiogenesis steps 1-9), early elongating (spermiogenesis steps 10-12), late elongating (spermiogenesis steps 13-14) and elongated spermatids (spermiogenesis steps 15-16). DNA staining, size and granulosity are used as selection parameters.

Abstract

La différenciation des spermatides de souris est un processus critique pour la production d'un gamète mâle fonctionnel avec un génome intact à être transmis à la génération suivante. Jusqu'à présent, les études moléculaires de cette transition morphologique ont été entravés par l'absence d'une méthode permettant une séparation adéquate de ces étapes importantes de la différenciation des spermatides pour des analyses ultérieures. Les tentatives précédentes pour bon déclenchement de ces cellules en utilisant la cytométrie de flux ont peut-être été difficile en raison d'une augmentation particulière de la fluorescence de l'ADN dans les spermatides subissant remodelage de la chromatine. Partant de ce constat, nous fournissons des détails d'un simple, cytométrie de flux système, permettant la purification reproductible de quatre populations de spermatides de souris fixes avec de l'éthanol, représentant chacun un état différent dans le processus de remodelage nucléaire. L'enrichissement de la population est confirmée en utilisant des marqueurs spécifiques étapes et critères morphologiques. Les spermatides purifiés peuvent être utilisés pour la génomique et de protéomiqueic analyse.

Introduction

Haploid round spermatids differentiate into spermatozoa by a process called spermiogenesis. This involves many different steps including the acquisition of a flagellum, chromatin and cytoskeleton remodeling, condensation of the nucleus as well as the loss of most of the cytoplasm. These unique cellular events must be finely regulated in order to produce a mature functional gamete with an intact genome suitable for fertilization. Spermiogenesis can hardly be studied in vitro since no reliable cell culture system has so far been able to support progression through the different steps of the process. Moreover, actual in vitro techniques lead to a poor yield1,2. In vivo, proper transitions through the different steps of spermiogenesis are crucial for the natural functional integrity of the male gamete. Successful purification of spermatids according to their differentiation steps has never been accomplished with a level of enrichment sufficient to allow molecular characterization of spermiogenesis. For instance, purification of key steps of the spermatidal differentiation would be especially useful to study the developing acrosome, formation of the midpiece3, cell junction dynamics4, RNA dynamics5, chromatin remodeling process6,7 or genomic stability8. Purification of spermatids has been hampered by their progressive morphological transformation, the lack of known stage-specific external biomarkers, and their peculiar shape and size.

Although most male germ cells display a direct relationship between DNA staining and ploidy (DNA content), we noticed that such positive correlation is no longer applicable to spermatids. This stems from our early observation that seminiferous tubule sections show variable intensity of DNA staining throughout the different spermiogenesis steps. Although DNA staining is consistent with their haploid set of chromosomes from spermiogenesis steps 1 to 7 (round spermatids), we observed a sharp increase in fluorescence intensity with DAPI or SYTO 16 around the onset of nuclear reorganization and chromatin remodeling (spermiogenesis step 8) reaching a peak at the onset of nuclear condensation (spermiogenesis steps 11-12). Following condensation of the nucleus, DNA staining intensity decreases until spermiation (spermiogenesis step 16). We surmised that this was likely associated with the formation of their peculiar chromatin structure transition where histones are replaced by protamines. We therefore developed a reliable flow cytometry method that allows the separation of spermatids using the variation of DNA intensity of spermatids as a main selection parameter.

A simple flow cytometry approach is described to separate mouse spermatids with high purity (95-100%) based on their apparent DNA content (SYTO16 staining), size and granulosity. Spermatids are separated into four populations; spermiogenesis steps 1-9, 10-12, 13-14 and 15-16. Purified spermatids are suitable for genetic/genomic analysis, as well as proteomic applications as described in a recent publication from our group9.

Protocol

Les soins des animaux était en conformité avec la protection des animaux et l'utilisation comité Université de Sherbrooke. 1. Préparation du tube Le jour avant le tri de cellules, ajouter 2.1 ml de sérum bovin foetal inactivé par la chaleur (FBS) à 5 ml polypropylene tubes à fond rond et à 15 ml et 50 ml polypropylene tubes coniques. Étape critique: Veiller à ce que chaque tube utilisé dans le protocole est revêtu. Remarque: Un revêtement FB…

Representative Results

Stratégie d'entrée sont utilisés avec la cytométrie en flux Figure 1 représente la stratégie de déclenchement utilisé dans la cytométrie en flux pour trier quatre populations de spermatides très pures. Brièvement, les cellules dont la coloration de l'ADN positif (Alexa Fluor 488-A) sont d'abord sélectionné avec la Porte 1. Spermatides de spermiogenèse steps 1-12 sont sélectionnés (G…

Discussion

Les cellules de la spermatogenèse ont toujours été difficiles à étudier étant donné la complexité de l'épithélium séminifère, ainsi que le succès limité de la culture in vitro. Au fil des ans, de nombreuses approches pour purifier les cellules germinales à partir de diverses espèces ont été développés. En utilisant des techniques de purification sédimentation par gravité avec des gradients de Percoll ou d'albumine bovine de sérum fournissent un bon rendement des cellules germinale…

Declarações

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier le Dr Leonid Volkov et Éric Bouchard pour leurs conseils techniques concernant microscopie à épifluorescence.

Aide financière

Financé par les Instituts de recherche en santé (subvention # MOP-93781) GB canadiennes

Materials

Isoflurane ABBOT 05260-05 For mouse anesthesia before euthanasia
Fetal bovine serum Wisent 90150 For tube coating
1X PBS
EDTA BioShop EDT For sorting buffer preparation
HEPES Sigma H For sorting buffer preparation
100 % Ethanol Les alcools de commerce 092-09-11N For cell fixation
SYTO 16 Life Technologies S7578 DNA staining
5 ml polypropylene round bottom tubes BD Falcon 352063 Sorted cells collection
15 ml polypropylene conical bottom tubes PROgene 1500
50 ml polypropylene conical bottom tubes PROgene 5000
TEC4 anaesthetic vaporizer Ohmeda 1160526 For mouse euthanasia
CO2 gas tank Praxair C799117902 For mouse euthanasia
O2 gas tank Praxair O254130501 For mouse euthanasia
Homemade mouse gas chamber For mouse euthanasia
40 µm Falcon cell strainer Corning Incorporated 352340
50-micron sample line filters BD Biosciences 649049
Vortex mixer Labnet international, inc. S0200 For cell fixation
Dynac centrifuge Clay Adams 101
Celltrics 50 µm filters Partec 04-004-2327
488 nm laser-euipped cell sorter BD Biosciences FACSAria III
Accudop Fluorescent Beads BD Biosciences 345249
Sorting Buffer: 1X PBS, 1mM EDTA pH 8.0, 25mM HEPES pH 7.0, 1%FBS FBS is heat-inactivated. Make fresh solution, 0.22 μm filtered and keep at 4°C.

Referências

  1. Sato, T., et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 471 (7339), 504-507 (2011).
  2. Sato, T., et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat. Commun. 2, 472 (2011).
  3. Sun, X., Kovacs, T., Hu, Y. -. J., Yang, W. -. X. The role of actin and myosin during spermatogenesis. Mol. Biol. Rep. 38 (6), 3993-4001 (2011).
  4. Cheng, C. Y., Mruk, D. D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825-874 (2002).
  5. Laiho, A., Kotaja, N., Gyenesei, A., Sironen, A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE. 8 (4), (2013).
  6. Leduc, F., Maquennehan, V., Nkoma, G. B., Boissonneault, G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol. Reprod. 78 (2), 324-332 (2008).
  7. Meistrich, M. L., Mohapatra, B., Shirley, C. R., Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 111 (8), 483-488 (2003).
  8. Grégoire, M. -. C., et al. Male-driven de novo mutations in haploid germ cells. Mol. Hum. Reprod. 19 (8), 495-499 (2013).
  9. Simard, O., et al. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum. Mutat. , (2014).
  10. Wykes, S. M., Krawetz, S. Separation of spermatogenic cells from adult transgenic mouse testes using unit-gravity sedimentation. Mol. Biotechnol. 25 (2), 131-138 (2003).
  11. Yoshida, S., et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development (Cambridge, England). 133 (8), 1495-1505 (2006).
  12. Moreno, R. D., Lizama, C., Urzúa, N., Vergara, S. P., Reyes, J. G. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res. 325 (3), 533-540 (2006).
  13. Meistrich, M. L., Trostle-Weige, P. K., Van Beek, M. E. Separation of specific stages of spermatids from vitamin A-synchronized rat testes for assessment of nucleoprotein changes during spermiogenesis. Biol. Reprod. 51 (2), 334-344 (1994).
  14. van Pelt, A. M., de Rooij, D. G. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol. Reprod. 43, 363-367 (1990).
  15. Getun, I. V., Torres, B., Bois, P. R. J. Flow cytometry purification of mouse meiotic cells. J. Vis. Exp. , (2011).
  16. Kovtun, I. V., McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27 (4), 407-411 (2001).
  17. Bastos, H., et al. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A. 65 (1), 40-49 (2005).
  18. Lassalle, B., Ziyyat, A., Testart, J., Finaz, C., Lefèvre, A. Flow cytometric method to isolate round spermatids from mouse testis. Hum. Reprod. 14 (2), 388-394 (1999).

Play Video

Citar este artigo
Simard, O., Leduc, F., Acteau, G., Arguin, M., Grégoire, M., Brazeau, M., Marois, I., Richter, M. V., Boissonneault, G. Step-specific Sorting of Mouse Spermatids by Flow Cytometry. J. Vis. Exp. (106), e53379, doi:10.3791/53379 (2015).

View Video