Summary

Stap-specifieke sorteren van Muis Spermatiden door flowcytometrie

Published: December 31, 2015
doi:

Summary

We describe a sorting strategy for mouse spermatids using flow cytometry. Spermatids are sorted into four highly pure populations, including round (spermiogenesis steps 1-9), early elongating (spermiogenesis steps 10-12), late elongating (spermiogenesis steps 13-14) and elongated spermatids (spermiogenesis steps 15-16). DNA staining, size and granulosity are used as selection parameters.

Abstract

De differentiatie van muis spermatiden is een kritisch proces voor de productie van een functionele mannelijke gameet een intact genoom aan de volgende generatie over te dragen. Tot nu toe zijn moleculaire studies van deze morfologische overgang belemmerd door het ontbreken van een methode waarmee een goede scheiding van deze belangrijke stappen spermatide differentiatie voor latere analyses. Eerdere pogingen tot goede gating van deze cellen via flowcytometrie kan moeilijk zijn omdat een bijzondere toename DNA fluorescentie in spermatiden ondergaan chromatine hermodellering. Op basis van deze waarneming, geven we gegevens van een eenvoudige flowcytometrie regeling, waardoor reproduceerbare zuivering van vier populaties van muis met ethanol vaste spermatiden, die elk een andere toestand in het vernieuwingsproces kern. Bevolking verrijking wordt bevestigd met behulp van stap-specifieke merkers en morfologische criteria. Het gezuiverde spermatiden kan worden gebruikt voor genomische en proteomic analyses.

Introduction

Haploid round spermatids differentiate into spermatozoa by a process called spermiogenesis. This involves many different steps including the acquisition of a flagellum, chromatin and cytoskeleton remodeling, condensation of the nucleus as well as the loss of most of the cytoplasm. These unique cellular events must be finely regulated in order to produce a mature functional gamete with an intact genome suitable for fertilization. Spermiogenesis can hardly be studied in vitro since no reliable cell culture system has so far been able to support progression through the different steps of the process. Moreover, actual in vitro techniques lead to a poor yield1,2. In vivo, proper transitions through the different steps of spermiogenesis are crucial for the natural functional integrity of the male gamete. Successful purification of spermatids according to their differentiation steps has never been accomplished with a level of enrichment sufficient to allow molecular characterization of spermiogenesis. For instance, purification of key steps of the spermatidal differentiation would be especially useful to study the developing acrosome, formation of the midpiece3, cell junction dynamics4, RNA dynamics5, chromatin remodeling process6,7 or genomic stability8. Purification of spermatids has been hampered by their progressive morphological transformation, the lack of known stage-specific external biomarkers, and their peculiar shape and size.

Although most male germ cells display a direct relationship between DNA staining and ploidy (DNA content), we noticed that such positive correlation is no longer applicable to spermatids. This stems from our early observation that seminiferous tubule sections show variable intensity of DNA staining throughout the different spermiogenesis steps. Although DNA staining is consistent with their haploid set of chromosomes from spermiogenesis steps 1 to 7 (round spermatids), we observed a sharp increase in fluorescence intensity with DAPI or SYTO 16 around the onset of nuclear reorganization and chromatin remodeling (spermiogenesis step 8) reaching a peak at the onset of nuclear condensation (spermiogenesis steps 11-12). Following condensation of the nucleus, DNA staining intensity decreases until spermiation (spermiogenesis step 16). We surmised that this was likely associated with the formation of their peculiar chromatin structure transition where histones are replaced by protamines. We therefore developed a reliable flow cytometry method that allows the separation of spermatids using the variation of DNA intensity of spermatids as a main selection parameter.

A simple flow cytometry approach is described to separate mouse spermatids with high purity (95-100%) based on their apparent DNA content (SYTO16 staining), size and granulosity. Spermatids are separated into four populations; spermiogenesis steps 1-9, 10-12, 13-14 and 15-16. Purified spermatids are suitable for genetic/genomic analysis, as well as proteomic applications as described in a recent publication from our group9.

Protocol

Animal Care in overeenstemming was met de Université de Sherbrooke dier zorg en gebruik Comite. 1. Tube Voorbereiding De dag voor celsortering, voeg 1-2 ml warmte geïnactiveerd foetaal runderserum (FBS) tot 5 ml polypropyleen buis met ronde bodem en met 15 ml en 50 ml polypropyleen conische buizen. Kritische stap: Zorg ervoor dat elke buis gebruikt in het protocol is gecoat. Opmerking: FBS coating voorkomt kiemcellen van het vasthouden aan de buis muren. </l…

Representative Results

Gating strategie gebruikt met flowcytometrie Figuur 1 geeft de gating strategie gebruikt flowcytometrie vier zeer zuiver spermatide populaties sorteren. In het kort, cellen met positieve DNA kleuring (Alexa Fluor 488-A) worden eerst geselecteerd met Gate 1. Spermatiden van spermiogenese stappen 1-12 worden geselecteerd (Gate 2) op een dot plot die de granulosity (SSC-A) versus grootte (FSC -A) vanaf Gate 1. Ve…

Discussion

Spermatogenese cellen altijd uitdagend om te studeren gezien de complexiteit van de seminiferus epitheel, en het beperkte succes van in vitro kweek. In de loop der jaren vele benaderingen zuiveren kiemcellen van verschillende species ontwikkeld. Sedimentatie technieken met behulp van de zwaartekracht zuiveren met Percoll of runderserumalbumine hellingen bieden meestal een goede opbrengst van intacte kiemcellen, maar gebrek aan een goede definitie tussen sommige celtypen, zoals de meiose tetraploïde cellen en s…

Declarações

The authors have nothing to disclose.

Acknowledgements

De auteurs willen dr Leonid Volkov en Éric Bouchard bedanken voor hun technisch advies over epifluorescentiemicroscopie.

Financiële steun

Gefinancierd door de Canadian Institutes of Health Research (subsidie ​​# MOP-93781) naar GB

Materials

Isoflurane ABBOT 05260-05 For mouse anesthesia before euthanasia
Fetal bovine serum Wisent 90150 For tube coating
1X PBS
EDTA BioShop EDT For sorting buffer preparation
HEPES Sigma H For sorting buffer preparation
100 % Ethanol Les alcools de commerce 092-09-11N For cell fixation
SYTO 16 Life Technologies S7578 DNA staining
5 ml polypropylene round bottom tubes BD Falcon 352063 Sorted cells collection
15 ml polypropylene conical bottom tubes PROgene 1500
50 ml polypropylene conical bottom tubes PROgene 5000
TEC4 anaesthetic vaporizer Ohmeda 1160526 For mouse euthanasia
CO2 gas tank Praxair C799117902 For mouse euthanasia
O2 gas tank Praxair O254130501 For mouse euthanasia
Homemade mouse gas chamber For mouse euthanasia
40 µm Falcon cell strainer Corning Incorporated 352340
50-micron sample line filters BD Biosciences 649049
Vortex mixer Labnet international, inc. S0200 For cell fixation
Dynac centrifuge Clay Adams 101
Celltrics 50 µm filters Partec 04-004-2327
488 nm laser-euipped cell sorter BD Biosciences FACSAria III
Accudop Fluorescent Beads BD Biosciences 345249
Sorting Buffer: 1X PBS, 1mM EDTA pH 8.0, 25mM HEPES pH 7.0, 1%FBS FBS is heat-inactivated. Make fresh solution, 0.22 μm filtered and keep at 4°C.

Referências

  1. Sato, T., et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 471 (7339), 504-507 (2011).
  2. Sato, T., et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat. Commun. 2, 472 (2011).
  3. Sun, X., Kovacs, T., Hu, Y. -. J., Yang, W. -. X. The role of actin and myosin during spermatogenesis. Mol. Biol. Rep. 38 (6), 3993-4001 (2011).
  4. Cheng, C. Y., Mruk, D. D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825-874 (2002).
  5. Laiho, A., Kotaja, N., Gyenesei, A., Sironen, A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE. 8 (4), (2013).
  6. Leduc, F., Maquennehan, V., Nkoma, G. B., Boissonneault, G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol. Reprod. 78 (2), 324-332 (2008).
  7. Meistrich, M. L., Mohapatra, B., Shirley, C. R., Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 111 (8), 483-488 (2003).
  8. Grégoire, M. -. C., et al. Male-driven de novo mutations in haploid germ cells. Mol. Hum. Reprod. 19 (8), 495-499 (2013).
  9. Simard, O., et al. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum. Mutat. , (2014).
  10. Wykes, S. M., Krawetz, S. Separation of spermatogenic cells from adult transgenic mouse testes using unit-gravity sedimentation. Mol. Biotechnol. 25 (2), 131-138 (2003).
  11. Yoshida, S., et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development (Cambridge, England). 133 (8), 1495-1505 (2006).
  12. Moreno, R. D., Lizama, C., Urzúa, N., Vergara, S. P., Reyes, J. G. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res. 325 (3), 533-540 (2006).
  13. Meistrich, M. L., Trostle-Weige, P. K., Van Beek, M. E. Separation of specific stages of spermatids from vitamin A-synchronized rat testes for assessment of nucleoprotein changes during spermiogenesis. Biol. Reprod. 51 (2), 334-344 (1994).
  14. van Pelt, A. M., de Rooij, D. G. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol. Reprod. 43, 363-367 (1990).
  15. Getun, I. V., Torres, B., Bois, P. R. J. Flow cytometry purification of mouse meiotic cells. J. Vis. Exp. , (2011).
  16. Kovtun, I. V., McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27 (4), 407-411 (2001).
  17. Bastos, H., et al. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A. 65 (1), 40-49 (2005).
  18. Lassalle, B., Ziyyat, A., Testart, J., Finaz, C., Lefèvre, A. Flow cytometric method to isolate round spermatids from mouse testis. Hum. Reprod. 14 (2), 388-394 (1999).
check_url/pt/53379?article_type=t

Play Video

Citar este artigo
Simard, O., Leduc, F., Acteau, G., Arguin, M., Grégoire, M., Brazeau, M., Marois, I., Richter, M. V., Boissonneault, G. Step-specific Sorting of Mouse Spermatids by Flow Cytometry. J. Vis. Exp. (106), e53379, doi:10.3791/53379 (2015).

View Video