Summary

Site Réalisé Étiquetage Spin et EPR spectroscopiques études de pentamères Ligand-Gated Ion Channels

Published: July 04, 2016
doi:

Summary

This article describes methods for site-directed spin labeling and reconstitution of pentameric ligand-gated channels for Electron Paramagnetic Resonance studies. This protocol can be adapted for any membrane protein. The reconstitution method described here can also be used for patch-clamp measurements of macroscopic and single-channel currents in a defined lipid system.

Abstract

Ion channel gating is a stimulus-driven orchestration of protein motions that leads to transitions between closed, open, and desensitized states. Fundamental to these transitions is the intrinsic flexibility of the protein, which is critically modulated by membrane lipid-composition. To better understand the structural basis of channel function, it is necessary to study protein dynamics in a physiological membrane environment. Electron Paramagnetic Resonance (EPR) spectroscopy is an important tool to characterize conformational transitions between functional states. In comparison to NMR and X-ray crystallography, the information obtained from EPR is intrinsically of lower resolution. However, unlike in other techniques, in EPR there is no upper-limit to the molecular weight of the protein, the sample requirements are significantly lower, and more importantly the protein is not constrained by the crystal lattice forces. Therefore, EPR is uniquely suited for studying large protein complexes and proteins in reconstituted systems. In this article, we will discuss general protocols for site-directed spin labeling and membrane reconstitution using a prokaryotic proton-gated pentameric Ligand-Gated Ion Channel (pLGIC) from Gloeobacter violaceus (GLIC) as an example. A combination of steady-state Continuous Wave (CW) and Pulsed (Double Electron Electron Resonance-DEER) EPR approaches will be described that will enable a complete quantitative characterization of channel dynamics.

Introduction

Au cours de la dernière décennie, la compréhension structurale des canaux ligand-dépendants pentamères ion (pLGIC) a augmenté à pas de géant, en raison de multitudes de structures à haute résolution de plusieurs membres de la famille. Les principaux facteurs qui ont conduit à des avancées actuelles dans le domaine comprennent, la découverte des canaux de pLGIC procaryotes, 1-3 grands progrès dans eucaryote expression de la protéine de la membrane, 4-6 et d' énormes percées dans les approches de détermination de la structure. 7 Ces structures fournissent un consensus clair sur la conservation d'ensemble de l'architecture tridimensionnelle de pLGIC. Toutefois, deux grands domaines qui semblent traîner derrière sont la caractérisation fonctionnelle de ces préparations de canal et la description mécaniste de la fonction du canal.

Gating changements conformationnels sont complexes et ont lieu sur une distance de 60 Å le long de la longueur du canal, et que ces transitions sont largement modulés parles lipides membranaires. En particulier, les lipides négatifs, le cholestérol et les phospholipides ont été montrés pour moduler la fonction de pLGIC 11/08. Bien que le rôle précis de ces constituants lipidiques en fonction du canal reste inconnue, une compréhension moléculaire complète de déclenchement, il faudrait étudier ces canaux dans leur environnement natif. Site-Directed Spin Labeling (SDSL) et résonance paramagnétique électronique (RPE) sont les techniques de choix pour l'étude de la dynamique des protéines dans les systèmes reconstitués. La spectroscopie EPR ne soit pas limitée par la taille moléculaire (comme RMN) ou de la propriété optique de l'échantillon (comme la spectroscopie de fluorescence) et permet ainsi des mesures de constructions de longueur complète dans des conditions reconstituées de lipides d'origine. La technique est extrêmement sensible et a des exigences de l'échantillon relativement faible (dans la gamme pico-mole). Ces deux aspects font la technique bien adaptée à l'étude de grandes protéines membranaires qui sont difficiles à exprimer dans plus de milligrammequantités.

L'utilisation de la spectroscopie EPR en combinaison avec dirigée marquage de spin a été développé par Wayne Hubbell et ses collègues, et a été adapté pour étudier une gamme de types de protéines. 12-24 données EPR ont été utilisées pour étudier les structures secondaires, les changements dans la protéine conformation, la profondeur d'insertion de membrane et la protéine-protéine / interactions protéine-ligand.

Le procédé implique la substitution de la cystéine à des positions d'intérêt par mutagénèse dirigée sur un site. Pour garantir un étiquetage spécifique au site, il est nécessaire de remplacer les cysteines natives avec un autre acide aminé (par exemple., Serine) pour créer un modèle de cystéine moins. De loin, l'étiquette la plus populaire de spin est un MTSL thiol-spécifique: (1-oxyl-2,2,5,5-tétraméthyl-Δ3-pyrroline-3-méthyl) méthanethiosulfonate qui se fixe à la protéine par un pont de liaison disulfure. En raison de sa haute spécificité, la taille relativement petite (légèrement plus grand que le tryptophane), et flexibilité de la région de liaison, ce marqueur de spin a été démontré qu'ils ont une excellente réactivité, même avec une cystéine enterrée. En outre, pour maximiser la réactivité, la réaction de marquage de la protéine est réalisée sous la forme d'un détergent solubilisé. Après séparation de l'excès libre spin-label par chromatographie d'exclusion stérique, la protéine est reconstituée dans des liposomes ou des systèmes bicouches mimant la composition lipidique définie. En général, la cystéine mutagenèse est bien toléré dans la plupart des parties de la protéine, et la taille relativement petite du spin-sonde provoque une perturbation minimale pour les structures secondaires et tertiaires. Faire en sorte que la modification a conservé des fonctions de type sauvage, les canaux marqués et reconstitués peuvent être étudiés par des mesures de patch-clamp.

La protéine marquée-fonctionnelle est ensuite soumis à des mesures spectroscopiques, qui fournissent essentiellement trois principaux types d'information: 12,14,15,20,22,23,25-27 dynamique spin-sonde par lineshanalyse singe; l'accessibilité de la sonde à des agents de relaxation paramagnétique; et la distance distribution. 27 distances EPR sont mesurées par deux approches différentes. La première est basée sur la vague (CW) technique continu, où l' élargissement spectral résultant d'interactions dipolaires entre spin-étiquettes (dans le 8 – Une gamme de 20 à distance). Est utilisé pour déterminer la distance 28,29 Le second est un pulsé EPR méthode où les mesures de distance peuvent être étendues jusqu'à 70 Å. 30-34 en Double Electron Electron Resonance (CERF), les oscillations de l'amplitude d'écho de spin sont analysés afin de déterminer les distances et les distributions de distance. Ici, l'écho de spin est modulé à la fréquence de l'interaction dipolaire. Ensemble, ces paramètres sont utilisés pour déterminer la protéine topologie, les éléments structuraux secondaires, et les changements de protéines conformationnelle.

Protocol

1. La mutagenèse dirigée et Cys Mutations Clonage et mutagénèse NOTE: GLIC type sauvage (wt) 35 a une cystéine unique native (C27), qui est muté à serine pour créer un fond de cystéine moins. Des mutations de cysteine ​​sont introduits sur la base de cystéine moins par mutagenèse dirigée en utilisant des amorces qui portent un codon cystéine à la position désirée 36. Mélanger 5 pi de tampon 10x réaction, 1 ul de 100 ng / ul cystéine moins G…

Representative Results

Caractérisation biochimique des Mutants GLIC Spin marqué En suivant le protocole décrit ci-dessus serait typiquement donner GLIC-MBP protéine de fusion dans la gamme de 10 – 12 mg / litre de culture. Bien que cette valeur peut varier entre les différents mutants, en particulier pour les positions enterrées dans la protéine, le rendement peut être considérablement compromise. Dans ces cas, les volumes …

Discussion

spectroscopie EPR est avérée être une approche structurelle sans précédent dans la quantification des changements conformationnels de protéines membranaires dans un environnement quasi-native. Cette approche nous permet un coup d'oeil dans les détails moléculaires de la dynamique des protéines qui sont obscurcis dans des structures à haute résolution de la cristallographie aux rayons X et cryo-microscopie électronique. Cependant, il est important de tenir compte des limites techniques de cette approche q…

Declarações

The authors have nothing to disclose.

Acknowledgements

Nous sommes très reconnaissants envers les membres actuels et anciens du laboratoire Chakrapani pour la lecture et les commentaires critiques sur le manuscrit. Ce travail a été soutenu par le National Institutes of Health subvention (1R01GM108921) et l'American Heart Association (NCRP scientifique de développement Grant 12SDG12070069) et de SC.

Materials

Site-Directed Mutagenesis and Cys mutations
10x PfuUltra HF reaction buffer Agilent Technologies 600380-52
dNTPS New England BioLabs Inc‎ N0447L 10mM each dNTP
pfu Ultra DNA polymerase Agilent Technologies 600380-51 2.5 U/ul
DPNI New England BioLabs Inc‎ R0176S 20,000 U/ml
XL10 GOLD Agilent Technologies 200314
SOC media New England BioLabs Inc‎ B9020S
Kanamycin Fisher Scientfic BP905
LB media Invitrogen 127957084
Miniprep kit QIAGEN 27106
C43 competent cells Lucigen 60446
Expression and Purification
Glucose Fisher Scientfic D16
Tryptone Fisher Bioreagents BP1421-500
Yeast extract Amresco J850
Glycerol Fisher Bioreagents BP229
K2HPO4 Amresco 0705
KH2PO4 Amresco 0781
IPTG (isopropyl-thio-β-galactoside) Gold Biotechnology I2481C25
Trizma Base Sigma Life Science T1503
NaCl Sigma-Aldrich S7653
DNase I Sigma Life Science DN25
PMSF Amresco M145
Leupeptine Amresco J580
Pepstatin Amresco J583
DDM (n-Docecyl-β-D-Maltopyranoside) Anatrace D310S
Amylose resin New England BioLabs Inc‎ E8021L
TCEP Amresco K831
EDTA Fisher Scientfic BP118
Maltose Acros Organics 329915000
Superdex 200GL GE Healthcare 17-5175-01
Empty polypropylene Chromatography column BioRad 731-1550
Site-Directed Spin Labeling
MTSL (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl) Methanethiosulfonate Toronto Reaserch chemicals Inc O873900
(1-acetoxy-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate Toronto Reaserch chemicals Inc A167900
DMSO J.T. Baker 9224-01
Reconstitution
Asolectin lipid Avanti polar lipids Inc 541602C
Biobeads (Polystyrine beads) Bio Rad 152-3920
Methanol Fisher chemicals A413
FRET
Fluorescein-maleimide ThermoFisher Scientific F-150
Tetramethylrhodamine-maleimide ThermoFisher Scientific T-6027
POPC Avanti polar lipids Inc 850457C
POPG Avanti polar lipids Inc 840457C
E.Coli polar lipid extract Avanti polar lipids Inc 100600C
HEPES Sigma Life Science H3375
EPR measurement
TPX plastic capillaries Bruker ER221
EDDA (Ethylenediamine-N, N'-diacetic acid) Aldrich 158186
Ni(OH)2 Aldrich 283622

Referências

  1. Tasneem, A., Iyer, L. M., Jakobsson, E., Aravind, L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 6, 4 (2005).
  2. Hilf, R. J., Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 452 (7185), 375-379 (2008).
  3. Bocquet, N., et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature. 457 (7225), 111-114 (2009).
  4. Hibbs, R. E., Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 474 (7349), 54-60 (2011).
  5. Miller, P. S., Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature. 512 (7514), 270-275 (2014).
  6. Hassaine, G., et al. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature. 512 (7514), 276-281 (2014).
  7. Du, J., Lu, W., Wu, S., Cheng, Y., Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. , (2015).
  8. Sunshine, C., McNamee, M. G. Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta. 1108, 240-246 (1992).
  9. Fong, T. M., McNamee, M. G. Correlation between acetylcholine receptor function and structural properties of membranes. Bioquímica. 25 (4), 830-840 (1986).
  10. daCosta, C. J., Baenziger, J. E. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J Biol Chem. 284 (26), 17819-17825 (2009).
  11. Criado, M., Eibl, H., Barrantes, F. J. Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem. 259 (14), 9188-9198 (1984).
  12. Hubbell, W. L., Lopez, C. J., Altenbach, C., Yang, Z. Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 23 (5), 725-733 (2013).
  13. Columbus, L., Hubbell, W. L. A new spin on protein dynamics. Trends Biochem Sci. 27 (6), 288-295 (2002).
  14. Hubbell, W. L., Cafiso, D. S., Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 7 (9), 735-739 (2000).
  15. McHaourab, H. S., Steed, P. R., Kazmier, K. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure. 19 (11), 1549-1561 (2011).
  16. Bordignon, E. Site-directed spin labeling of membrane proteins. Top Curr Chem. 321, 121-157 (2012).
  17. Klare, J. P., Steinhoff, H. J. Spin labeling EPR. Photosynth Res. 102 (2-3), 377-390 (2009).
  18. Drescher, M. EPR in protein science : intrinsically disordered proteins. Top Curr Chem. 321, 91-119 (2012).
  19. Perozo, E., Cuello, L. G., Cortes, D. M., Liu, Y. S., Sompornpisut, P. EPR approaches to ion channel structure and function. Novartis Found Symp. 245, 146-158 (2002).
  20. Fanucci, G. E., Cafiso, D. S. Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol. 16 (5), 644-653 (2006).
  21. Sahu, I. D., McCarrick, R. M., Lorigan, G. A. Use of electron paramagnetic resonance to solve biochemical problems. Bioquímica. 52 (35), 5967-5984 (2013).
  22. Hubbell, W. L., McHaourab, H. S., Altenbach, C., Lietzow, M. A. Watching proteins move using site-directed spin labeling. Structure. 4 (7), 779-783 (1996).
  23. Altenbach, C., Marti, T., Khorana, H. G., Hubbell, W. L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science. 248 (4959), 1088-1092 (1990).
  24. McHaourab, H. S., Lietzow, M. A., Hideg, K., Hubbell, W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Bioquímica. 35 (24), 7692-7704 (1996).
  25. Farahbakhsh, Z. T., Altenbach, C., Hubbell, W. L. Spin labeled cysteines as sensors for protein-lipid interaction and conformation in rhodopsin. Photochem Photobiol. 56 (6), 1019-1033 (1992).
  26. Altenbach, C., Greenhalgh, D. A., Khorana, H. G., Hubbell, W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 91 (5), 1667-1671 (1994).
  27. Altenbach, C., Froncisz, W., Hemker, R., McHaourab, H., Hubbell, W. L. Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J. 89 (3), 2103-2112 (2005).
  28. Rabenstein, M. D., Shin, Y. K. Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci U S A. 92 (18), 8239-8243 (1995).
  29. Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K., Hubbell, W. L. Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Bioquímica. 40 (51), 15471-15482 (2001).
  30. Borbat, P. P., McHaourab, H. S., Freed, J. H. Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J Am Chem Soc. 124 (19), 5304-5314 (2002).
  31. Chiang, Y. W., Borbat, P. P., Freed, J. H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson. 172 (2), 279-295 (2005).
  32. Jeschke, G. DEER distance measurements on proteins. Annu Rev Phys Chem. 63, 419-446 (2012).
  33. Jeschke, G., Polyhach, Y. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys. 9 (16), 1895-1910 (2007).
  34. Jeschke, G., Wegener, C., Nietschke, M., Jung, H., Steinhoff, H. J. Interresidual distance determination by four-pulse double electron-electron resonance in an integral membrane protein: the Na+/proline transporter PutP of Escherichia coli. Biophys J. 86 (4), 2551-2557 (2004).
  35. Hilf, R. J., Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature. 457 (7225), 115-118 (2009).
  36. Velisetty, P., Chalamalasetti, S. V., Chakrapani, S. Conformational transitions underlying pore opening and desensitization in membrane-embedded Gloeobacter violaceus ligand-gated ion channel (GLIC). J Biol Chem. 287 (44), 36864-36872 (2012).
  37. Birnboim, H. C., Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7 (6), 1513-1523 (1979).
  38. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74 (12), 5463-5467 (1977).
  39. Sanger, F., Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 94 (3), 441-448 (1975).
  40. McHaourab, H. S., Kalai, T., Hideg, K., Hubbell, W. L. Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Bioquímica. 38 (10), 2947-2955 (1999).
  41. Gross, A., Columbus, L., Hideg, K., Altenbach, C., Hubbell, W. L. Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Bioquímica. 38 (32), 10324-10335 (1999).
  42. Velisetty, P., Chakrapani, S. Desensitization mechanism in a Prokaryotic ligand-gated ion channel. J Biol Chem. 287 (22), (2012).
  43. Velisetty, P., Chakrapani, S. Desensitization mechanism in prokaryotic ligand-gated ion channel. J Biol Chem. 287 (22), 18467-18477 (2012).
  44. Chakrapani, S., Cuello, L. G., Cortes, D. M., Perozo, E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure. 16 (3), 398-409 (2008).
  45. Cuello, L. G., Cortes, D. M., Perozo, E. Structural dynamics of the KvAP pore domain lacking the voltage sensing domain. Biophysical Journal. 88 (1), 19-20 (2005).
  46. Perozo, E., Cortes, D. M., Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science. 285 (5424), 73-78 (1999).
  47. Chakrapani, S., Sompornpisut, P., Intharathep, P., Roux, B., Perozo, E. The activated state of a sodium channel voltage sensor in a membrane environment. Proc Natl Acad Sci U S A. 107 (12), 5435-5440 (2010).
  48. Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K., Perozo, E. A structural mechanism for MscS gating in lipid bilayers. Science. 321 (5893), 1210-1214 (2008).
  49. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature. 418 (6901), 942-948 (2002).
  50. Kim, M., Xu, Q., Murray, D., Cafiso, D. S. Solutes alter the conformation of the ligand binding loops in outer membrane transporters. Bioquímica. 47 (2), 670-679 (2008).
  51. Kazmier, K., Sharma, S., Islam, S. M., Roux, B., McHaourab, H. S. Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1. Proc Natl Acad Sci U S A. 111 (41), 14752-14757 (2014).
  52. Durr, K. L., et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell. 158 (4), 778-792 (2014).
  53. Borbat, P. P., et al. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol. 5 (10), e271 (2007).
  54. Zou, P., McHaourab, H. S. Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J. 98 (6), 18-20 (2010).
  55. Pannier, M., Veit, S., Godt, A., Jeschke, G., Spiess, H. W. Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson. 142 (2), 331-340 (2000).
  56. Jeschke, G., et al. DeerAnalysis2006-a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance. 30 (3-4), 473-498 (2006).
  57. Ruta, V., Jiang, Y., Lee, A., Chen, J., MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature. 422 (6928), 180-185 (2003).
  58. Velisetty, P., Chalamalasetti, S. V., Chakrapani, S. Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). J Biol Chem. 289 (5), 3013-3025 (2014).
  59. Dellisanti, C. D., et al. Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol. 11 (11), e1001714 (2013).
  60. Labriola, J. M., et al. Structural sensitivity of a prokaryotic pentameric ligand-gated ion channel to its membrane environment. J Biol Chem. 288 (16), 11294-11303 (2013).
  61. Kinde, M. N., et al. Conformational Changes Underlying Desensitization of the Pentameric Ligand-Gated Ion Channel ELIC. Structure. 23 (6), 995-1004 (2015).
  62. Vasquez, V., Cortes, D. M., Furukawa, H., Perozo, E. An optimized purification and reconstitution method for the MscS channel: strategies for spectroscopical analysis. Bioquímica. 46 (23), 6766-6773 (2007).
  63. Bayburt, T. H., Sligar, S. G. Membrane protein assembly into Nanodiscs. FEBS Lett. 584 (9), 1721-1727 (2010).
  64. Hanson, S. M., Francis, D. J., Vishnivetskiy, S. A., Klug, C. S., Gurevich, V. V. Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem. 281 (14), 9765-9772 (2006).
  65. McCoy, J., Hubbell, W. L. High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci U S A. 108 (4), 1331-1336 (2011).
  66. Mobius, K., et al. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Magn Reson Chem. 43, 4-19 (2005).
  67. Lopez, C. J., Oga, S., Hubbell, W. L. Mapping Molecular Flexibility of Proteins with Site-Directed Spin Labeling: A Case Study of Myoglobin. Bioquímica. 51 (33), 6568-6583 (2012).
  68. Fleissner, M. R., et al. Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci U S A. 106 (51), 21637-21642 (2009).
  69. Lorenzi, M., et al. Tyrosine-targeted spin labeling and EPR spectroscopy: an alternative strategy for studying structural transitions in proteins. Angew Chem Int Ed Engl. 50 (39), 9108-9111 (2011).
check_url/pt/54127?article_type=t

Play Video

Citar este artigo
Basak, S., Chatterjee, S., Chakrapani, S. Site Directed Spin Labeling and EPR Spectroscopic Studies of Pentameric Ligand-Gated Ion Channels. J. Vis. Exp. (113), e54127, doi:10.3791/54127 (2016).

View Video