Summary

Caractériser Propriétés Multiscale mécaniques des tissus de cerveau en utilisant la microscopie à force atomique, Impact indentation et Rheometry

Published: September 06, 2016
doi:

Summary

We present a set of techniques to characterize the viscoelastic mechanical properties of brain at the micro-, meso-, and macro-scales.

Abstract

Pour concevoir et ingénieur des matériaux inspirés par les propriétés du cerveau, que ce soit pour les simulants mécaniques ou pour les études de régénération des tissus, les tissus du cerveau lui-même doit être bien caractérisé à différentes échelles de longueur et de temps. Comme beaucoup de tissus biologiques, les tissus du cerveau présente une structure hiérarchique complexe. Cependant, contrairement à la plupart des autres tissus, le cerveau est de très faible rigidité mécanique, avec élastique des modules E de Young de l'ordre de 100s de Pa. Cette faible rigidité peut présenter des défis à la caractérisation expérimentale des propriétés mécaniques clés. Ici, nous démontrons plusieurs techniques de caractérisation mécaniques qui ont été adaptés pour mesurer les propriétés élastiques et viscoélastiques, les matériaux hydratés conformes biologiques tels que les tissus du cerveau, à différentes échelles de longueur et les taux de chargement. Au micrométrique, nous effectuons fluage-conformité et de relaxation de la force des expériences utilisant microscope à force atomique activé indentation. Au mesoscale, nous effectuons des expériences d'indentation d'impact en utilisant un pénétrateur instrumenté basé pendule. À l'échelle macroscopique, nous effectuons des plaques parallèles rhéométrie pour quantifier la fréquence dépendant de modules de cisaillement élastique. Nous discutons également les défis et les limites associées à chaque méthode. Ensemble, ces techniques permettent une caractérisation mécanique en profondeur du tissu cérébral qui peut être utilisé pour mieux comprendre la structure du cerveau et à l'ingénieur des matériaux bio-inspirés.

Introduction

La plupart des tissus mous comprenant des organes biologiques sont mécaniquement et structurellement complexes, de faible rigidité par rapport à l'os minéralisé ou de matériaux d'ingénierie, et présentent une déformation non linéaire et dépendant du temps. Par rapport à d' autres tissus dans le corps, le tissu cérébral est remarquablement compatible avec les modules d' élasticité E de l'ordre de 100s de 1 Pa. Le tissu cérébral présente hétérogénéité structurelle de gris distincte et interdigitée et les régions de la substance blanche qui diffèrent également fonctionnellement. la mécanique des tissus cérébraux aideront à la compréhension de la conception des matériaux et des modèles informatiques pour simuler la réponse du cerveau au cours de blessure, de faciliter la prédiction des dommages mécaniques, et permettent l'ingénierie des stratégies de protection. En outre, de telles informations peuvent être utilisées pour examiner les objectifs de conception pour la régénération des tissus, et pour mieux comprendre les changements structurels dans le tissu cérébral qui sont associés à des maladies telles que la sclérose en plaques et l'autisme. Havant, nous décrivons et démontrons plusieurs approches expérimentales qui sont disponibles pour caractériser les propriétés viscoélastiques des tissus compatibles mécaniquement, y compris les tissus du cerveau, au micro, meso et macro-échelles.

Au micrométrique, nous avons mené fluage-conformité et la force des expériences de relaxation en utilisant microscope à force atomique (AFM) d'indentation -enabled. En règle générale, l' indentation AFM activé est utilisé pour estimer le module d' élasticité (ou rigidité instantanée) d'un échantillon de 2-4. Cependant, le même instrument peut également être utilisé pour mesurer viscoélastique micrométrique propriétés (temps ou taux dépendant) 5-10. Le principe de ces expériences, montré à la figure 1, est à mettre en retrait un AFM encorbellement sonde dans le tissu cérébral, de maintenir une amplitude déterminée de la force ou de la profondeur d'indentation, et de mesurer les changements correspondants dans la profondeur d'indentation et de la force, respectivement, au fil du temps. L'utilisation de ces données, nous pouvons calculer le fluage compliance J C et module de relaxation G R, respectivement.

A l'échelle méso, nous avons réalisé des expériences de mise en retrait d'impact dans des conditions de fluide immergé qui maintiennent la structure du tissu et le niveau d'hydratation, à l'aide d'un pendule à base nanoindenteur instrumenté. Le dispositif expérimental est illustré sur la figure 2. Comme le pendule oscille en contact avec le tissu, d'une sonde de déplacement est enregistrée en fonction du temps jusqu'à ce que le pendule oscillant vient en appui dans le tissu. De l'amortissement mouvement oscillatoire harmonique résultant de la sonde, on peut calculer la profondeur maximale de pénétration x max, la capacité de dissipation d'énergie K, et le facteur de qualité de dissipation Q (qui concerne le taux de dissipation d'énergie) du tissu 11,12.

À l'échelle macroscopique, nous avons utilisé une plaque rhéomètre parallèle à quantifier la fréquence de cisaillement dépend des modules élastiques,appelé le module de stockage G 'et le module de perte G ", du tissu. Dans ce type de rhéométrie, nous appliquons une souche angulaire harmonique (et la déformation de cisaillement correspondante) à des amplitudes et des fréquences connues et mesurer le couple réactionnel (et la contrainte de cisaillement correspondante) , comme le montre la figure 3. de l'amplitude et la phase résultant décalage du couple mesuré et les variables géométriques du système, nous pouvons calculer G 'et G "à des fréquences appliquées d'intérêt 13,14.

Protocol

Déclaration éthique: Tous les protocoles expérimentaux ont été approuvés par le Comité de recherche animale de l'Hôpital pour enfants de Boston et sont conformes aux National Institutes of Health Guide pour le soin et l'utilisation des animaux de laboratoire. 1. Souris cerveau Procédures d'acquisition de tissus (pour l'indentation de l'AFM-permis et l'impact indentation) Préparer un mélange kétamine / xylazine pour anesthésier les souris. Combi…

Representative Results

La figure 4 montre l' indentation et représentant la force en fonction des temps de réponse (figure 4B, E) pour la compliance de fluage et de relaxation des expériences de force, compte tenu de la force appliquée ou la profondeur de pénétration (figure 4A, D), respectivement. À partir de ces données et de la géométrie du système, la compliance de fluage J c (t) et la force de relaxation modules G</e…

Discussion

Chaque technique présentée dans cet article mesure les différentes facettes de propriétés mécaniques des tissus cérébraux. respect Creep et la relaxation des contraintes des modules sont une mesure de propriétés mécaniques en fonction du temps. Le stockage et la perte des modules représentent des propriétés mécaniques taux dépendant. L'impact indentation mesure également les propriétés mécaniques dépendant du débit, mais dans le contexte de la dissipation d'énergie. Lorsque la caractérisa…

Declarações

The authors have nothing to disclose.

Acknowledgements

We acknowledge support of this work by the National Multiple Sclerosis Society and Simons Center for the Social Brain. BQ acknowledges support from the U.S. National Defense Science & Engineering Graduate Fellowship program.

Materials

Xylaxine Lloyd Laboratoried perscription drug
Ketamine AnaSed Injections perscription drug
Vibratome (Vibrating blade microtome) Leica VT1200
Hibernate-A Medium Gibco A1247501 CO2-independent neural medium for adult tissue
Atomic Force Microscope, MFP-3D-BIO Asylum Research
Petri Dish Heater Asylum Research
AFM Probe, 0.03 N/m, 10 um radius borosilicate sphere Novascan PT.GS
Cell-Tak Corning 354240 mussel-derived bioadhesive
Sodium Bicarbonate Sigma-Aldrich S5761 alternate suppliers can be used
Sodium Hydroxide, 1N Sigma-Aldrich 59223C alternate suppliers can be used
Instrumented Indenter, NanoTest Vantage Micro Materials Ltd. probe tip needs to be machined (steel flat punch, 1mm diameter, 4-5 mm length)
NanoTest Liquid Cell Micro Materials Ltd.
Parallel Plate Rheometer MCR501 Anton-Parr
PP25  Anton-Parr 25 mm diameter flat measurement plate
Adhesive Sandpaper McMaster-Carr 4184A48 alternate suppliers can be used
Loctite 4013 Instant Adhesive Henkel 20268 alternate suppliers can be used

Referências

  1. van Dommelen, J. A. W., Hrapko, M., Peters, G. W. M. Mechanical Properties of Brain Tissue: Characterisation and Constitutive Modelling. Mechanosensitivity of the Nervous System. , 249-281 (2009).
  2. Liu, F., Tschumperlin, D. J. Micro-mechanical characterization of lung tissue using atomic force microscopy. Journal of Visualized Experiments. (54), e2911 (2011).
  3. Peaucelle, A. AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. Journal of Visualized Experiments. (89), e51317 (2014).
  4. Thomas, G., Burnham, N. A., Camesano, T. A., Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. Journal of Visualized Experiments. (76), e50497 (2013).
  5. Moreno-Flores, S., Benitez, R., Vivanco, M. d. M., Toca-Herrera, J. L. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components. Nanotechnology. 21, 445101 (2010).
  6. Desprat, N., Richert, A., Simeon, J., Asnacios, A. Creep function of a single living cell. Biophysical Journal. 88 (3), 2224-2233 (2005).
  7. Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H. Measurement of creep compliance of solid polymers by nanoindentation. Mechanics Time-Dependent Materials. 7 (3/4), 189-207 (2003).
  8. Cheng, L., Xia, X., Scriven, L. E., Gerberich, W. W. Spherical-tip indentation of viscoelastic material. Mechanics of Materials. 37, 213-226 (2005).
  9. Kalcioglu, Z., Qu, M., Van Vliet, Multiscale characterization of relaxation times of tissue surrogate gels and soft tissues. 7th Army Science Conference Proceedings. , (2010).
  10. Moreno-Flores, S., Benitez, R., Vivanco, M. D., Toca-Herrera, J. L. Stress relaxation microscopy: Imaging local stress in cells. Journal of Biomechanics. 43 (2), 349-354 (2010).
  11. Kalcioglu, Z. I., Qu, M., et al. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels. Philosophical Magazine. 91 (7-9), 1339-1355 (2011).
  12. Kalcioglu, Z. I., Ra Mrozek, R. a., Mahmoodian, R., VanLandingham, M. R., Lenhart, J. L., Van Vliet, K. J. Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants. Journal of Biomechanics. 46 (9), 1583-1591 (2013).
  13. Janmey, P. A., Georges, P. C., Hvidt, S. Basic rheology for biologists. Methods in Cell Biology. 83, 3-27 (2007).
  14. Miller, K., Kurtcuoglu, V. . Biomechanics of the Brain. , (2011).
  15. Lévy, R., Maaloum, M. Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology. 13 (1), 33-37 (2002).
  16. Fuierer, R. Basic Operation Procedures for the Asylum Research MFP-3D Atomic Force Microscope. MFP-3D Procedureal Operation “Manualette”. , (2006).
  17. Elkin, B. S., Ilankovan, A., Morrison, B. Age-dependent regional mechanical properties of the rat hippocampus and cortex. Journal of Biomechanical Engineering. 132, 011010 (2010).
  18. Elkin, B. S., Azeloglu, E. U., Costa, K. D., Morrison, B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. Journal of Neurotrauma. 24 (5), 812-822 (2007).
  19. Lee, E. H., Radok, J. R. M. The Contact Problem for Visooelastic Bodies. Journal of Applied Mechanics. 27 (3), 438-444 (1960).
  20. Lin, D. C., Dimitriadis, E. K., Horkay, F. Robust strategies for automated AFM force curve analysis–I. Non-adhesive indentation of soft, inhomogeneous materials. Journal of Biomechanical Engineering. 129 (3), 430-440 (2007).
  21. Constantinides, G., Kalcioglu, Z. I., McFarland, M., Smith, J. F., Van Vliet, K. J. Probing mechanical properties of fully hydrated gels and biological tissues. Journal of Biomechanics. 41 (15), 3285-3289 (2008).
  22. Shen, F., Tay, T. E., et al. Modified Bilston Nonlinear Viscoelastic Model for Finite Element Head Injury Studies. Journal of Biomechanical Engineering — Transactions of the ASME. 128 (5), 797-801 (2006).
  23. van Dommelen, J. a. W., vander Sande, T. P. J., Hrapko, M., Peters, G. W. M. Mechanical properties of brain tissue by indentation: Interregional variation. Journal of the Mechanical Behavior of Biomedical Materials. 3 (2), 158-166 (2010).
  24. Rother, J., Nöding, H., Mey, I., Janshoff, A. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open biology. 4 (5), 140046 (2014).
  25. Du, P., Lu, H., Zhang, X. Measuring the Young’s Relaxation Modulus of PDMS Using Stress Relaxation Nanoindentation. Symposium DD – Microelectromechanical Systems – Materials and Devices III. 1222 (c), (2009).
  26. Elkin, B. S., Morrison, B. Viscoelastic properties of the P17 and adult rat brain from indentation in the coronal plane. Journal of Biomechanical Engineering. 135, 114507 (2013).
  27. Brands, D. W., Bovendeerd, P. H., Peters, G. W., Wismans, J. S., Paas, M. H., van Bree, J. L. Comparison of the dynamic behavior of brain tissue and two model materials. 43rd Stapp Car Crash Conference Proceedings. , 313-320 (1999).
  28. Hrapko, M., van Dommelen, J. A. W., Peters, G. W. M., Wismans, J. S. H. M. Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology. 45 (6), 663-676 (2008).
  29. Pogoda, K., Chin, L., et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New Journal of Physics. 16 (7), 075002 (2014).
  30. Peters, G. W. M., Meulman, J. H., Sauren, A. A. H. J. The applicability of the time/temperature superposition principle to brain tissue. Biorheology. 34 (2), 127-138 (1997).

Play Video

Citar este artigo
Canovic, E. P., Qing, B., Mijailovic, A. S., Jagielska, A., Whitfield, M. J., Kelly, E., Turner, D., Sahin, M., Van Vliet, K. J. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry. J. Vis. Exp. (115), e54201, doi:10.3791/54201 (2016).

View Video